Functional representations of lattice-ordered semirings. III
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 235-248
Voir la notice de l'article provenant de la source Math-Net.Ru
Lattice-ordered semirings ($drl$-semirings) are considered. Compact sheaves of $drl$-semirings are defined and their characterization is obtained. The properties of compact sheaves are studied; in particular, the structure of irreducible and maximal $l$-ideals in the $drl$-semiring of sections of a compact sheaf is described. A compact sheaf of functional semirings ($f$-semirings) is described in terms of a continuous mapping of the irreducible (and maximal) spectrum of this sheaf onto a compact Hausdorff space. The paper also contains a proof that an $f$-semiring is Gelfand if and only if it is isomorphic to the semiring of all sections of a compact sheaf of $f$-semirings with a unique maximal ideal.
Keywords:
lattice-ordered semiring, functional semiring, compact sheaf, Gelfand $f$-semiring.
@article{TIMM_2020_26_3_a19,
author = {V. V. Chermnykh and O. V. Chermnykh},
title = {Functional representations of lattice-ordered semirings. {III}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {235--248},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a19/}
}
TY - JOUR AU - V. V. Chermnykh AU - O. V. Chermnykh TI - Functional representations of lattice-ordered semirings. III JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 235 EP - 248 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a19/ LA - ru ID - TIMM_2020_26_3_a19 ER -
V. V. Chermnykh; O. V. Chermnykh. Functional representations of lattice-ordered semirings. III. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 235-248. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a19/