@article{TIMM_2020_26_3_a19,
author = {V. V. Chermnykh and O. V. Chermnykh},
title = {Functional representations of lattice-ordered semirings. {III}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {235--248},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a19/}
}
V. V. Chermnykh; O. V. Chermnykh. Functional representations of lattice-ordered semirings. III. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 235-248. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a19/
[1] Rao P.R., “Lattice ordered semirings”, Math. Sem. Notes, Kobe Univ, 9 (1981), 119–149 | MR | Zbl
[2] Swamy K.L.N., “Dually residuated lattice ordered semigroups”, Math. Ann., 159 (1965), 105–114 | DOI | MR | Zbl
[3] Chermnykh O.V., “O $drl$-polugruppakh i $drl$-polukoltsakh”, Chebyshevskii sb., 14:4 (2016), 167–179 | DOI | MR
[4] Chermnykh V.V., Chermnykh O.V., “Funktsionalnye predstavleniya reshetochno uporyadochennykh polukolets”, Sib. elektron. mat. izvestiya, 14 (2017), 946–971 | DOI | MR | Zbl
[5] Chermnykh O.V., “Funktsionalnye predstavleniya reshetochno uporyadochennykh polukolets. II”, Sib. elektron. mat. izvestiya, 15 (2018), 677–684 | DOI | MR | Zbl
[6] Pierce R.S., “Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70 (1967), 1–112 | DOI | MR | Zbl
[7] Koh K., “On a representation of strongly harmonic ring by sheaves”, Pacif. J. Math., 41:2 (1972), 459–468 | DOI | MR | Zbl
[8] Mulvey C.J., “A generalization of Gelfand duality”, J. Algebra, 56:2 (1979), 499–505 | DOI | MR | Zbl
[9] Filipoiu A., “Compact sheaves of lattices and normal lattices”, Math. Jap., 36:2 (1991), 381–386 | MR | Zbl
[10] Chermnykh V.V., “Predstavlenie polozhitelnykh polukolets secheniyami”, Uspekhi mat. nauk, 47:5 (1992), 180–182 | DOI | MR | Zbl
[11] Chermnykh V.V., “Funktsionalnye predstavleniya polukolets”, Fundam. i prikl. matematika, 17:3 (2012), 111–227 | DOI | MR | Zbl
[12] Mulvey C.J., “Compact ringed spaces”, J. Algebra, 52:2 (1978), 411–436 | DOI | MR | Zbl
[13] Simmons H., “Compact representations - the lattice theory of compact ringed spaces”, J. Algebra, 126 (1989), 493–531 | DOI | MR | Zbl
[14] Dauns J., Hofmann K.H., “The representation of biregular rings by sheaves”, Math. Z., 91 (1966), 103–123 | DOI | MR | Zbl
[15] Davey B.A., “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl
[16] Birkhoff G., Lattice theory, Amer. Math. Soc., Providence, R.I., 1967, 418 pp. | MR | Zbl
[17] Miklin A.V., Chermnykh V.V., “O $drl$-polukoltsakh”, Mat. vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 16 (2014), 87–95