@article{TIMM_2020_26_3_a11,
author = {Ya. N. Nuzhin},
title = {Tensor representations and generating sets of involutions of some matrix groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {133--141},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a11/}
}
Ya. N. Nuzhin. Tensor representations and generating sets of involutions of some matrix groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 133-141. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a11/
[1] Steinberg P., Lektsii o gruppakh Shevalle, Mir, Moskva, 1975, 263 pp.
[2] Kourovskaya tetrad, 17-e izd., eds. red. V. D. Mazurov E. I. Khukhro, In-t matematiki SO RAN, Novosibirsk, 2010, 136 pp.
[3] Nuzhin Ya.N., “O porozhdayuschikh mnozhestvakh involyutsii prostykh konechnykh grupp”, Algebra i logika, 58:3 (2019), 426–434 | Zbl
[4] Scott L.L., “Matricies and cohomology”, Ann. of Math., 105 (1977), 473–492 | DOI | MR | Zbl
[5] Tamburini M.C., Zucca P., “Generation of certain matrix groups by three involutions, two of which commute”, J. Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl
[6] Nuzhin Ya.N., “Porozhdayuschie elementy grupp lieva tipa nad konechnym polem nechetnoi kharakteristiki. II”, Algebra i logika, 36:4 (1997), 422–440 | MR | Zbl
[7] Nuzhin Ya.N., “O porozhdaemosti gruppy $PSL_n(\mathbb{Z})$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vladikavkaz. mat. zhurn., 10:1 (2008), 68–74 | MR | Zbl
[8] Levchuk D.V., Nuzhin Ya.N., “On generation of the group $PSL_n (\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, J. Sib. Fed. Univ. Math. Phys., 1:2 (2008), 133–139 | MR
[9] Ward J.M., Generation of simple groups by conjugate involutions, Thesis of Doctor of Philosophy, Queen Mary college, University of London, 2009, 193 pp.
[10] Diedonne J., “Les determinants sur up corps non commutatif”, Bull. Soc. Math. France, 71 (1943), 27–45 | DOI | MR
[11] Suprunenko D.A., Gruppy matrits, Nauka, Moskva, 1972, 352 pp. | MR
[12] Moiseenkova T.V., “Porozhdayuschie multiplety involyutsii grupp $SL_n(\mathbb{Z})$ i $PSL_n(\mathbb{Z})$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 195–198
[13] Gillio B.M., Tamburini M.C., “Some class of groups generated by three involutions”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 116 (1985), 191–209 | MR | Zbl
[14] Nuzhin Ya.N., “Porozhdayuschie troiki involyutsii grupp Shevalle nad konechnym polem kharakteristiki 2”, Algebra i logika, 29:2 (1990), 192–206 | MR | Zbl
[15] Vsemirnov M.A., “Yavlyaetsya li gruppa $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-porozhdennoi?”, Zap. nauchn. sem. POMI, 330 (2006), 101–130 | Zbl
[16] Vsemirnov M.A., “O $(2,3)$-porozhdenii matrichnykh grupp nad koltsom tselykh chisel”, Algebra i analiz, 19:6 (2007), 22–58
[17] Martino L.Di., Vavilov N., “$(2,3)$-generation of $SL(n,q)$. I. Cases $n = 5,6,7$”, Comm. Algebra, 22 (1994), 1321–1347 | DOI | MR | Zbl
[18] Tabakov K., Tchakerian K., “$(2,3)$-generation of the groups $PSL_6(q)$”, Serdica Math. J., 37 (2011), 365–370 | MR | Zbl
[19] Pellegrini M.A., “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI | MR | Zbl