Tensor representations and generating sets of involutions of some matrix groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 133-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known that all irreducible representations of Chevalley groups over infinite fields and modular representations in nice characteristics of fields of definition are exhausted by subrepresentations of tensor products of their natural representations. We consider two specific subrepresentations of this kind and use them to answer two questions on the number of generating involutions of some matrix groups. For an integral domain $D$ of characteristic different from 2, we establish the irreducibility of the symmetric and external squares of the natural representation of the group $SL_n(D)$ and find their kernels (Theorem 1). Denote by $n(G)$ (by $n_c(G)$) the minimum number of generating (and also conjugate, respectively) involutions of $G$ whose product is 1. Problems on finding the numbers $n(G)$ and $n_c(G)$ for finite simple groups are written by the author in the Kourovka Notebook (Question 14.69). Based on Theorem 1 and L. L. Scott's inequality, we prove the following result. Let $G$ be $SL_3(D)$ or $SL_6(D)$, where $D$ is an integral domain of characteristic different from 2. Then $n(G)>5$ and, in particular, $G$ is not generated by three involutions two of which commute; moreover, if $D$ is the ring of integers or a finite field (of odd order), then $n(G)=n_c(G)=6$ (Theorem 2).
Keywords: special linear group over the integral domain, tensor representations, generating sets of involutions.
@article{TIMM_2020_26_3_a11,
     author = {Ya. N. Nuzhin},
     title = {Tensor representations and generating sets of involutions of some matrix groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {133--141},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a11/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
TI  - Tensor representations and generating sets of involutions of some matrix groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 133
EP  - 141
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a11/
LA  - ru
ID  - TIMM_2020_26_3_a11
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%T Tensor representations and generating sets of involutions of some matrix groups
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 133-141
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a11/
%G ru
%F TIMM_2020_26_3_a11
Ya. N. Nuzhin. Tensor representations and generating sets of involutions of some matrix groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 133-141. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a11/

[1] Steinberg P., Lektsii o gruppakh Shevalle, Mir, Moskva, 1975, 263 pp.

[2] Kourovskaya tetrad, 17-e izd., eds. red. V. D. Mazurov E. I. Khukhro, In-t matematiki SO RAN, Novosibirsk, 2010, 136 pp.

[3] Nuzhin Ya.N., “O porozhdayuschikh mnozhestvakh involyutsii prostykh konechnykh grupp”, Algebra i logika, 58:3 (2019), 426–434 | Zbl

[4] Scott L.L., “Matricies and cohomology”, Ann. of Math., 105 (1977), 473–492 | DOI | MR | Zbl

[5] Tamburini M.C., Zucca P., “Generation of certain matrix groups by three involutions, two of which commute”, J. Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl

[6] Nuzhin Ya.N., “Porozhdayuschie elementy grupp lieva tipa nad konechnym polem nechetnoi kharakteristiki. II”, Algebra i logika, 36:4 (1997), 422–440 | MR | Zbl

[7] Nuzhin Ya.N., “O porozhdaemosti gruppy $PSL_n(\mathbb{Z})$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vladikavkaz. mat. zhurn., 10:1 (2008), 68–74 | MR | Zbl

[8] Levchuk D.V., Nuzhin Ya.N., “On generation of the group $PSL_n (\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, J. Sib. Fed. Univ. Math. Phys., 1:2 (2008), 133–139 | MR

[9] Ward J.M., Generation of simple groups by conjugate involutions, Thesis of Doctor of Philosophy, Queen Mary college, University of London, 2009, 193 pp.

[10] Diedonne J., “Les determinants sur up corps non commutatif”, Bull. Soc. Math. France, 71 (1943), 27–45 | DOI | MR

[11] Suprunenko D.A., Gruppy matrits, Nauka, Moskva, 1972, 352 pp. | MR

[12] Moiseenkova T.V., “Porozhdayuschie multiplety involyutsii grupp $SL_n(\mathbb{Z})$ i $PSL_n(\mathbb{Z})$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 195–198

[13] Gillio B.M., Tamburini M.C., “Some class of groups generated by three involutions”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 116 (1985), 191–209 | MR | Zbl

[14] Nuzhin Ya.N., “Porozhdayuschie troiki involyutsii grupp Shevalle nad konechnym polem kharakteristiki 2”, Algebra i logika, 29:2 (1990), 192–206 | MR | Zbl

[15] Vsemirnov M.A., “Yavlyaetsya li gruppa $\mathrm{SL}(6,\mathbb{Z})$ $(2,3)$-porozhdennoi?”, Zap. nauchn. sem. POMI, 330 (2006), 101–130 | Zbl

[16] Vsemirnov M.A., “O $(2,3)$-porozhdenii matrichnykh grupp nad koltsom tselykh chisel”, Algebra i analiz, 19:6 (2007), 22–58

[17] Martino L.Di., Vavilov N., “$(2,3)$-generation of $SL(n,q)$. I. Cases $n = 5,6,7$”, Comm. Algebra, 22 (1994), 1321–1347 | DOI | MR | Zbl

[18] Tabakov K., Tchakerian K., “$(2,3)$-generation of the groups $PSL_6(q)$”, Serdica Math. J., 37 (2011), 365–370 | MR | Zbl

[19] Pellegrini M.A., “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI | MR | Zbl