Automorphisms of rings of nonfinitary niltriangular matrices
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K$ be an associative ring with identity, and let $\Gamma$ be an arbitrary linearly ordered set (briefly, chain). Matrices $\alpha=\|a_{ij}\|$ over $K$ with indices $i$ and $j$ from $\Gamma$ with respect to linear operations always form a $K$-module $M(\Gamma, K)$. The matrix multiplication in $M(\Gamma,K)$ is generally not defined if $\Gamma$ is an infinite chain. The finitary matrices in $M(\Gamma,K)$ form a known ring with matrix multiplication and addition. On the other hand, as proved in 2019, for the chain $\Gamma={\mathbb N}$ of natural numbers, the submodule in $M(\Gamma, K)$ of all (lower) niltriangular matrices with matrix multiplication and addition gives a radical ring $NT(\Gamma,K)$. Its adjoint group is isomorphic to the limit unitriangular group. The automorphisms of the group $UT(\infty,K)$ over a field $K$ of order greater than 2 were studied by R. Slowik. In the present paper, it is proved that any infinite chain $\Gamma$ is isometric or anti-isometric to the chain ${\mathbb N}$ or the chain of all integers if $NT(\Gamma,K)$ with matrix multiplication is a ring. When the ring of coefficients $K$ has no divisors of zero, the main theorem shows that the automorphisms of $NT({\mathbb N},K)$ and of the associated Lie ring, as well as of the adjoint group, are standard.
Keywords: radical ring, Chevalley algebra, unitriangular group, nonfinitary generalizations
Mots-clés : niltriangular subalgebra, automorphism.
@article{TIMM_2020_26_3_a0,
     author = {J. V. Bekker and D. V. Levchuk and E. A. Sotnikova},
     title = {Automorphisms of rings of nonfinitary niltriangular matrices},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--13},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/}
}
TY  - JOUR
AU  - J. V. Bekker
AU  - D. V. Levchuk
AU  - E. A. Sotnikova
TI  - Automorphisms of rings of nonfinitary niltriangular matrices
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 7
EP  - 13
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/
LA  - ru
ID  - TIMM_2020_26_3_a0
ER  - 
%0 Journal Article
%A J. V. Bekker
%A D. V. Levchuk
%A E. A. Sotnikova
%T Automorphisms of rings of nonfinitary niltriangular matrices
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 7-13
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/
%G ru
%F TIMM_2020_26_3_a0
J. V. Bekker; D. V. Levchuk; E. A. Sotnikova. Automorphisms of rings of nonfinitary niltriangular matrices. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 7-13. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/

[1] Levchuk V.M., “Nekotorye lokalno nilpotentnye koltsa i ikh prisoedinennye gruppy”, Mat. zametki, 42:5 (1987), 631–641 | MR | Zbl

[2] Kuzucuoglu F., Levchuk V.M., “Isomorphism of certain locally nilpotent finitary groups and associated rings”, Acta Appl. Math., 82:2 (2004), 169–181 | DOI | MR | Zbl

[3] Merzlyakov Yu. I., “Ekvipodgruppy unitreugolnykh grupp: kriterii samonormalizuemosti”, Dokl. RAN, 339:6 (1994), 732–735 | Zbl

[4] Kholubovski V., Algebraicheskie svoistva grupp beskonechnykh matrits, avtoreferat dis. ... d-ra fiz.-mat. nauk, S.-Peterb. gos. un-t, Sankt-Peterburg, 2007, 27 pp.

[5] Kholubovski V., Algebraicheskie svoistva grupp beskonechnykh matrits, Wydawnictwo Politechniki Slaskiej, Gliwice, 2017, 136 pp. | MR

[6] Slowik R., “Bijective maps of infinite triangular and unitriangular matrices preserving commutators”, Linear and Multilinear Algebra, 61:8 (2013), 1028–1040 | DOI | MR | Zbl

[7] Levchuk V. M., Radchenko O. V., “Derivations of the locally nilpotent matrix rings”, J. Algebra Appl., 9:5 (2010), 717–724 | DOI | MR | Zbl

[8] Holubowski W., Slowik R., “Parabolic subgroups of groups of column-finite infinite matrices”, Linear Algebra Appl., 437:2 (2012), 519–524 | DOI | MR | Zbl

[9] Levchuk V.M., Bekker Yu.V., Sotnikova E.A., “Nefinitarnye obobscheniya niltreugolnykh podalgebr algebr Shevalle”, Izv. Irkut. gos. un-ta. Ser. Matematika, 29 (2019), 39–51 | DOI | MR | Zbl

[10] Kurosh A. G., Obschaya algebra, Lan, SPb., 1975, 262 pp. | MR

[11] Kuratovski K., Mostovski A., Set theory, Ser. Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1968, 417 pp. | MR

[12] Dubish R., Perlis S., “On total nilpotent groups”, Amer. J. Math., 73:3 (1951), 439–452 | DOI | MR

[13] Levchuk V.M., “Svyazi unitreugolnoi gruppy s nekotorymi koltsami. II. Gruppy avtomorfizmov”, Sib. mat. zhurn., 24:4 (1983), 543–557 | Zbl