Automorphisms of rings of nonfinitary niltriangular matrices
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 7-13
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $K$ be an associative ring with identity, and let $\Gamma$ be an arbitrary linearly ordered set (briefly, chain). Matrices $\alpha=\|a_{ij}\|$ over $K$ with indices $i$ and $j$ from $\Gamma$ with respect to linear operations always form a $K$-module $M(\Gamma, K)$. The matrix multiplication in $M(\Gamma,K)$ is generally not defined if $\Gamma$ is an infinite chain. The finitary matrices in $M(\Gamma,K)$ form a known ring with matrix multiplication and addition. On the other hand, as proved in 2019, for the chain $\Gamma={\mathbb N}$ of natural numbers, the submodule in $M(\Gamma, K)$ of all (lower) niltriangular matrices with matrix multiplication and addition gives a radical ring $NT(\Gamma,K)$. Its adjoint group is isomorphic to the limit unitriangular group. The automorphisms of the group $UT(\infty,K)$ over a field $K$ of order greater than 2 were studied by R. Slowik. In the present paper, it is proved that any infinite chain $\Gamma$ is isometric or anti-isometric to the chain ${\mathbb N}$ or the chain of all integers if $NT(\Gamma,K)$ with matrix multiplication is a ring. When the ring of coefficients $K$ has no divisors of zero, the main theorem shows that the automorphisms of $NT({\mathbb N},K)$ and of the associated Lie ring, as well as of the adjoint group, are standard.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
radical ring, Chevalley algebra, unitriangular group, nonfinitary generalizations
Mots-clés : niltriangular subalgebra, automorphism.
                    
                  
                
                
                Mots-clés : niltriangular subalgebra, automorphism.
@article{TIMM_2020_26_3_a0,
     author = {J. V. Bekker and D. V. Levchuk and E. A. Sotnikova},
     title = {Automorphisms of rings of nonfinitary niltriangular matrices},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--13},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/}
}
                      
                      
                    TY - JOUR AU - J. V. Bekker AU - D. V. Levchuk AU - E. A. Sotnikova TI - Automorphisms of rings of nonfinitary niltriangular matrices JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 7 EP - 13 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/ LA - ru ID - TIMM_2020_26_3_a0 ER -
J. V. Bekker; D. V. Levchuk; E. A. Sotnikova. Automorphisms of rings of nonfinitary niltriangular matrices. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 7-13. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a0/
