On the equivalence of reproducing kernel Hilbert spaces connected by a special transform
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 200-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider two reproducing kernel Hilbert spaces $H_1$ and $H_2$ consisting of complex-valued functions defined on some sets of points $\Omega_1\subset {\mathbb C}^n$ and $\Omega_2\subset {\mathbb C}^m$, respectively. The norms in the spaces $H_1$ and $H_2$ have an integral form: \begin{align*} \|f\|_{H_1}^2=\int_{\Omega_1}|f(t)|^2\,d\mu_1(t), \ \ f\in H_1,\quad \|q\|_{H_2}^2=\int_{\Omega_2}|q(z)|^2\,d\mu_2(z), \ \ q\in H_2. \end{align*} Let $\{E (\cdot, z)\}_{z\in \Omega_2}$ be some complete system of functions in the space $H_1$. Define \begin{align*} \widetilde f(z)\stackrel{def}{=}(E(\cdot, z), f)_{H_1} \ \ \forall z\in \Omega_2,\quad \widetilde H_1=\{\widetilde f,\, f\in H_1\}, (\widetilde f_1,\widetilde f_2)_{\widetilde H_1}\stackrel{def}{=}(f_2,f_1)_{H_1}, \quad \|\widetilde f_1\|_{\widetilde H_1}=\|f_1\|_{H_1} \ \ \forall\,\widetilde f_1,\,\widetilde f_2\in \widetilde H_1. \end{align*} We prove that the Hilbert spaces $\widetilde H_1$ and $H_2$ are equivalent (i.e., consist of the same functions and have equivalent norms) if and only if there exists a linear continuous one-to-one operator ${\mathcal A}$ acting from the space $\overline H_1$ onto the space $H_2$ that for any $\xi\in \Omega_1$ takes the function $K_{\overline H_1}(\cdot,\xi)$ to the function $E(\xi,\cdot)$, where $\overline H_1$ is the space consisting of functions that are complex conjugate to functions from $H_1$ and $K_{\overline H_1}(t,\xi)$, $t,\xi\in \Omega_1$, is the reproducing kernel of $\overline H_1$. We also obtain other conditions for the equivalence of the spaces $\widetilde H_1$ and $H_2$. In addition, we study the question of the equivalence of the spaces $\check H_2$ and $H_1$ and the question of the existence of special orthosimilar expansion systems in the spaces $H_1$ and $H_2$. We derive a necessary and sufficient condition for the equivalence of the spaces $H_1$ and $H_2$. This paper continues the authors' paper in which the case of coinciding spaces $\widetilde H_1$ and $H_2$ was considered.
Keywords: orthosimilar decomposition systems, reproducing kernel Hilbert space, problem of describing the dual space.
@article{TIMM_2020_26_2_a15,
     author = {V. V. Napalkov and V. V. Napalkov},
     title = {On the equivalence of reproducing kernel {Hilbert} spaces connected by a special transform},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {200--215},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a15/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - V. V. Napalkov
TI  - On the equivalence of reproducing kernel Hilbert spaces connected by a special transform
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 200
EP  - 215
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a15/
LA  - ru
ID  - TIMM_2020_26_2_a15
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A V. V. Napalkov
%T On the equivalence of reproducing kernel Hilbert spaces connected by a special transform
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 200-215
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a15/
%G ru
%F TIMM_2020_26_2_a15
V. V. Napalkov; V. V. Napalkov. On the equivalence of reproducing kernel Hilbert spaces connected by a special transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 200-215. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a15/

[1] Aronszajn N., “Theory of reproducing kernels”, Transactions of the AMS, 68:3 (1950), 337–404 | DOI | MR | Zbl

[2] Berlinet A., Thomas–Agnan C., Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Acad. Publ., N Y, 2001, 355 pp. | DOI | MR

[3] Bargmann V., “On a Hilbert space of analytic functions and an associated integral transform”, Comm. Pure Appl. Math., 1:14 (1961), 187–214 | DOI | MR

[4] Isaev K.P., Yulmukhametov R.S., “Preobrazovaniya Laplasa funktsionalov na prostranstvakh Bergmana”, Izv. RAN. Ser. matematicheskaya, 68:1 (2004), 5–42 | DOI | MR | Zbl

[5] Napalkov V.V. (ml.), Yulmukhametov R.S., “Vesovye preobrazovaniya Fure — Laplasa analiticheskikh funktsionalov v kruge”, Mat. sb., 183:11 (1992), 139–144 | Zbl

[6] Napalkov V.V. (ml.), Yulmukhametov R.S., “O preobrazovanii Gilberta v prostranstve Bergmana”, Mat. zametki, 70:1 (2001), 68–78 | DOI | MR | Zbl

[7] Lukashenko T.P., “O svoistvakh sistem razlozheniya podobnykh ortogonalnym”, Izv. RAN. Ser. matematicheskaya, 62:5 (1998), 187–206 | DOI | MR | Zbl

[8] Bogolyubov N.N., Logunov A.A., Oksak A.I., Todorov I.T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1977, 616 pp. | MR

[9] Napalkov V.V. (ml.), “Ortopodobnye sistemy razlozheniya v prostranstvakh s vosproizvodyaschim yadrom”, Ufim. mat. zhurn., 5:4 (2013), 91–104

[10] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, Moskva, 1962, 896 pp.

[11] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, Moskva, 1979, 588 pp.

[12] Napalkov V.V., Napalkov V.V. (ml.), “Ob izomorfizme gilbertovykh prostranstv s vosproizvodyaschim yadrom”, Dokl. AN, 474:6 (2017), 665–667 | DOI | Zbl