Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 188-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of oscillations of objects with moving boundaries formulated as a differential equation with boundary and initial conditions is a nonclassical generalization of the hyperbolic type problem. To facilitate the construction of a solution to this problem and justify the choice of the solution form, we construct equivalent integro-differential equations with symmetric time-dependent kernels and time-varying integration limits. The advantages of the method of integro-differential equations are found in the transition to more complex dynamic systems that carry concentrated masses oscillating under mobile loads. The method is extended to a broader class of model boundary value problems that take into account the bending stiffness, environmental resistance, and stiffness of the base of the oscillating object. Special attention is paid to the analysis of the most common applied case when the boundaries are subject to external perturbations. The problem is solved in dimensionless variables up to the values of the second order of smallness relative to the small parameters that characterize the speed of the boundary movement. We find an approximate solution of a problem on transverse vibrations of a rope with bending stiffness in a lifting device; one end of the rope is wound on a drum and the other is fixed to a load. The results obtained for the oscillation amplitude corresponding to the $n$th dynamic mode are presented. The phenomena of steady-state resonance and passage through the resonance are studied by numerical methods.
Keywords: resonance properties, oscillations in systems with moving boundaries, laws of motion of the boundaries, integro-differential equations
Mots-clés : amplitude of oscillations.
@article{TIMM_2020_26_2_a14,
     author = {V. L. Litvinov},
     title = {Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {188--199},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/}
}
TY  - JOUR
AU  - V. L. Litvinov
TI  - Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 188
EP  - 199
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/
LA  - ru
ID  - TIMM_2020_26_2_a14
ER  - 
%0 Journal Article
%A V. L. Litvinov
%T Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 188-199
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/
%G ru
%F TIMM_2020_26_2_a14
V. L. Litvinov. Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 188-199. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/

[1] Kolosov L.B., Zhigula T.I., “Prodolno–poperechnye kolebaniya struny kanata pod'emnoi ustanovki”, Izv. vuzov. Gornyi zhurnal, 1981, no. 3, 83–86

[2] Zhu W.D., Chen Y., “Theoretical and experimental investigation of elevator cable dynamics and control”, J. Vibr. Acoust, 128:1 (2006), 66–78 | DOI

[3] Shi Y., Wu. L., Wang Y., “Nelineinyi analiz sobstvennykh chastot trosovoi sistemy”, J. Vibr. Eng., 19:2 (2006), 173–178

[4] Goroshko O.A., Savin G.N., Vvedenie v mekhaniku deformiruemykh odnomernykh tel peremennoi dliny, Nauk. dumka, Kiev, 1971, 290 pp.

[5] Litvinov V.L., Anisimov V.N., “Poperechnye kolebaniya kanata, dvizhuschegosya v prodolnom napravlenii”, Izv. Samar. nauch. tsentra Rossiiskoi akademii nauk, 19:4 (2017), 161–165

[6] Savin G.N., Goroshko O.A, Dinamika niti peremennoi dliny, Nauk. dumka, Kiev, 1962, 332 pp.

[7] Liu Z., Chen G., “Analiz ploskikh nelineinykh svobodnykh kolebanii nesuschego kanata s uchetom vliyaniya izgibnoi zhestkosti”, J. Vibr. Eng., 2007, no. 1, 57–60

[8] Palm J. et al., “Simulation of mooring cable dynamics using a discontinuous Galerkin method”, V Internat. Conf. on Computational Methods in Marine Engineering, 2013, 455–466

[9] Litvinov V.L., “Issledovanie svobodnykh kolebanii mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi asimptoticheskogo metoda”, Zhurn. Srednevolzh. mat. obschestva, 16:1 (2014), 83–88 | MR | Zbl

[10] Litvinov V.L., Anisimov V.N., Matematicheskoe modelirovanie i issledovanie kolebanii odnomernykh mekhanicheskikh sistem s dvizhuschimisya granitsami, monografiya, Samar. gos. tekhn. un-t, Samara, 2017, 149 pp.

[11] Lezhneva A.A., “Svobodnye izgibnye kolebaniya balki peremennoi dliny”, Uchenye zapiski, no. 156, Izd-vo Perm. un-ta, Perm, 1966, 143–150

[12] Wang L., Zhao Y., “Multiple internal resonances and non–planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vibr., 319:1–2 (2009), 1–14 | DOI

[13] Zhao Y., Wang L., “On the symmetric modal interaction of the suspended cable: three–to one internal resonance”, J. Sound Vibr., 294:4–5 (2006), 1073–1093 | DOI

[14] Litvinov V.L., Anisimov V.N., “Primenenie metoda Kantorovicha — Galerkina dlya resheniya kraevykh zadach s usloviyami na dvizhuschikhsya granitsakh”, Izv. Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2018, no. 2, 70–77

[15] Berlioz A., Lamarque C.–H., “A non–linear model for the dynamics of an inclined cable”, J. of Sound and Vibration, 279:3 (2005), 619–639 | DOI

[16] Sandilo S.H., van Horssen W.T., “On variable length induced vibrations of a vertical string”, J. of Sound and Vibratio, 333:11 (2014), 2432–2449 | DOI | MR

[17] Zhang W., Tang Y., “Global dynamics of the cable under combined parametrical and external excitations”, Internat. J. of Non-Linear Mechanics, 37:3 (2002), 505–526 | DOI | Zbl

[18] Faravelli L.,Fuggini C., Ubertini F., “Toward a hybrid control solution for cable dynamics: Theoretical prediction and experimental validation”, Struct. Control Health Monit., 17:4 (2010), 386–403 | DOI

[19] Vesnitskii A.I., Volny v sistemakh s dvizhuschimisya granitsami i nagruzkami, Fizmatlit, M., 2001, 320 pp.

[20] Anisimov V.N., Litvinov V.L., Korpen I.V., “Ob odnom metode polucheniya analiticheskogo resheniya volnovogo uravneniya, opisyvayuschego kolebaniya sistem s dvizhuschimisya granitsami”, Vestn. Samar. gos. tekhn. un-ta. Ser. “Fiziko-mat. nauki”, 2012, no. 3(28), 145–151 | DOI | MR | Zbl

[21] Vesnitskii A.I., “Obratnaya zadacha dlya odnomernogo rezonatora, izmenyayuschego vo vremeni svoi razmery”, Izv. vuzov. Radiofizika, 1971, no. 10, 1538–1542

[22] Barsukov K.A., Grigoryan G.A., “K teorii volnovoda s podvizhnymi granitsami”, Izv. vuzov. Radiofizika, 1976, no. 2, 280–285