Mots-clés : amplitude of oscillations.
@article{TIMM_2020_26_2_a14,
author = {V. L. Litvinov},
title = {Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {188--199},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/}
}
TY - JOUR AU - V. L. Litvinov TI - Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 188 EP - 199 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/ LA - ru ID - TIMM_2020_26_2_a14 ER -
%0 Journal Article %A V. L. Litvinov %T Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations %J Trudy Instituta matematiki i mehaniki %D 2020 %P 188-199 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/ %G ru %F TIMM_2020_26_2_a14
V. L. Litvinov. Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 188-199. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a14/
[1] Kolosov L.B., Zhigula T.I., “Prodolno–poperechnye kolebaniya struny kanata pod'emnoi ustanovki”, Izv. vuzov. Gornyi zhurnal, 1981, no. 3, 83–86
[2] Zhu W.D., Chen Y., “Theoretical and experimental investigation of elevator cable dynamics and control”, J. Vibr. Acoust, 128:1 (2006), 66–78 | DOI
[3] Shi Y., Wu. L., Wang Y., “Nelineinyi analiz sobstvennykh chastot trosovoi sistemy”, J. Vibr. Eng., 19:2 (2006), 173–178
[4] Goroshko O.A., Savin G.N., Vvedenie v mekhaniku deformiruemykh odnomernykh tel peremennoi dliny, Nauk. dumka, Kiev, 1971, 290 pp.
[5] Litvinov V.L., Anisimov V.N., “Poperechnye kolebaniya kanata, dvizhuschegosya v prodolnom napravlenii”, Izv. Samar. nauch. tsentra Rossiiskoi akademii nauk, 19:4 (2017), 161–165
[6] Savin G.N., Goroshko O.A, Dinamika niti peremennoi dliny, Nauk. dumka, Kiev, 1962, 332 pp.
[7] Liu Z., Chen G., “Analiz ploskikh nelineinykh svobodnykh kolebanii nesuschego kanata s uchetom vliyaniya izgibnoi zhestkosti”, J. Vibr. Eng., 2007, no. 1, 57–60
[8] Palm J. et al., “Simulation of mooring cable dynamics using a discontinuous Galerkin method”, V Internat. Conf. on Computational Methods in Marine Engineering, 2013, 455–466
[9] Litvinov V.L., “Issledovanie svobodnykh kolebanii mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi asimptoticheskogo metoda”, Zhurn. Srednevolzh. mat. obschestva, 16:1 (2014), 83–88 | MR | Zbl
[10] Litvinov V.L., Anisimov V.N., Matematicheskoe modelirovanie i issledovanie kolebanii odnomernykh mekhanicheskikh sistem s dvizhuschimisya granitsami, monografiya, Samar. gos. tekhn. un-t, Samara, 2017, 149 pp.
[11] Lezhneva A.A., “Svobodnye izgibnye kolebaniya balki peremennoi dliny”, Uchenye zapiski, no. 156, Izd-vo Perm. un-ta, Perm, 1966, 143–150
[12] Wang L., Zhao Y., “Multiple internal resonances and non–planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vibr., 319:1–2 (2009), 1–14 | DOI
[13] Zhao Y., Wang L., “On the symmetric modal interaction of the suspended cable: three–to one internal resonance”, J. Sound Vibr., 294:4–5 (2006), 1073–1093 | DOI
[14] Litvinov V.L., Anisimov V.N., “Primenenie metoda Kantorovicha — Galerkina dlya resheniya kraevykh zadach s usloviyami na dvizhuschikhsya granitsakh”, Izv. Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2018, no. 2, 70–77
[15] Berlioz A., Lamarque C.–H., “A non–linear model for the dynamics of an inclined cable”, J. of Sound and Vibration, 279:3 (2005), 619–639 | DOI
[16] Sandilo S.H., van Horssen W.T., “On variable length induced vibrations of a vertical string”, J. of Sound and Vibratio, 333:11 (2014), 2432–2449 | DOI | MR
[17] Zhang W., Tang Y., “Global dynamics of the cable under combined parametrical and external excitations”, Internat. J. of Non-Linear Mechanics, 37:3 (2002), 505–526 | DOI | Zbl
[18] Faravelli L.,Fuggini C., Ubertini F., “Toward a hybrid control solution for cable dynamics: Theoretical prediction and experimental validation”, Struct. Control Health Monit., 17:4 (2010), 386–403 | DOI
[19] Vesnitskii A.I., Volny v sistemakh s dvizhuschimisya granitsami i nagruzkami, Fizmatlit, M., 2001, 320 pp.
[20] Anisimov V.N., Litvinov V.L., Korpen I.V., “Ob odnom metode polucheniya analiticheskogo resheniya volnovogo uravneniya, opisyvayuschego kolebaniya sistem s dvizhuschimisya granitsami”, Vestn. Samar. gos. tekhn. un-ta. Ser. “Fiziko-mat. nauki”, 2012, no. 3(28), 145–151 | DOI | MR | Zbl
[21] Vesnitskii A.I., “Obratnaya zadacha dlya odnomernogo rezonatora, izmenyayuschego vo vremeni svoi razmery”, Izv. vuzov. Radiofizika, 1971, no. 10, 1538–1542
[22] Barsukov K.A., Grigoryan G.A., “K teorii volnovoda s podvizhnymi granitsami”, Izv. vuzov. Radiofizika, 1976, no. 2, 280–285