@article{TIMM_2020_26_1_a7,
author = {A. R. Danilin},
title = {Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {102--111},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/}
}
TY - JOUR AU - A. R. Danilin TI - Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 102 EP - 111 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/ LA - ru ID - TIMM_2020_26_1_a7 ER -
A. R. Danilin. Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 102-111. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/
[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp.
[2] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR
[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp.
[4] Casas E., “A review on sparse solutions in optimal control of partial differential equations”, SeMA J., 74 (2017), 319–344 | DOI | MR | Zbl
[5] Lou H., Yong J., “Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls”, Math. Control Relat. Fields, 8:1 (2018), 57–88 | DOI | MR | Zbl
[6] Betz Livia M., “Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations”, SIAM J. Control Optim., 57:6 (2019), 4033–4062 | DOI | MR | Zbl
[7] Danilin A.R., Zorin A.P., “Asimptotika resheniya zadachi optimalnogo granichnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:4 (2009), 95–107
[8] Danilin A.R., Zorin A.P., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo granichnogo upravleniya”, Dokl. AN, 440:4 (2011), 1–4
[9] Zorin A.P., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo upravleniya ogranichennym potokom na granitse”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 115–121 | MR
[10] Kapustyan V.E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Cer. Matematika, estestvoznanie, tekhnicheskie nauki, 1992, no. 2, 70–74
[11] Danilin A.R., “Optimalnoe granichnoe upravlenie v oblasti s maloi polostyu”, Ufim. mat. zhurn., 4:2 (2012), 87–100 | MR
[12] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 540 pp. | MR
[13] Moren K., Metody gilbertova prostranstva, Mir, M., 1965, 570 pp.
[14] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp.
[15] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp.
[16] Vishik M.I., Lyusternik L.A., “Regulyaronoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | Zbl
[17] Ilin A.M., “Pogranichnyi sloi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 175–214