Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 102-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a problem of optimal boundary control for solutions of an elliptic type equation in a bounded domain with smooth boundary with a small coefficient at the Laplace operator, a small coefficient, cosubordinate with the first, at the boundary condition, and integral constraints on the control: $$ \left\{ \begin {array}{ll} \displaystyle \mathcal {L}_\varepsilon \mathop {:=} \nolimits - \varepsilon^2 \Delta z + a(x) z = f(x), \displaystyle x\in \Omega,\quad z \in H^1 (\Omega), \\[3ex] \displaystyle l_{\varepsilon,\beta} z\mathop {:=} \nolimits \varepsilon^\beta \frac{\partial z}{\partial n} = g(x) + u(x), x\in\Gamma, \end {array} \right. $$ $$ J(u) \mathop {:=} \nolimits \|z-z_d\|^2 + \nu^{-1}|||u|||^2 \to \inf, \quad u \in \mathcal {U}, $$ where $0\varepsilon\ll 1$, $\beta\geqslant 0$, $\beta\in\mathbb{Q}$, $\nu>0,$ $H^1 (\Omega)$ is the Sobolev function space, $\partial z/\partial n$ is the derivative of $z$ at the point $x\in\Gamma$ in the direction of the outer (with respect to the domain $\Omega$) normal, $$ \begin {array}{c} \displaystyle a(\cdot), f(\cdot) \in C^\infty(\overline{\Omega}), \quad g(\cdot)\in C^\infty(\Gamma),\quad \forall\, x\in \overline{\Omega}\quad a(x)\geqslant \alpha^2>0, \\[2ex] \displaystyle \mathcal {U} = \mathcal {U}_1,\quad \mathcal {U}_r\mathop {:-} \nolimits \{u(\cdot)\in L_2(\Gamma)\colon |||u||| \leqslant r \}. \end {array} $$ Here $\|\cdot\|$ and $|||\cdot|||$ are the norms in the spaces $L_2(\Omega)$ and $L_2(\Gamma)$, respectively. We find the complete asymptotic expansion of the solution of the problem in the powers of the small parameter in the case where $0\beta3/2$.
Keywords: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
@article{TIMM_2020_26_1_a7,
     author = {A. R. Danilin},
     title = {Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--111},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 102
EP  - 111
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/
LA  - ru
ID  - TIMM_2020_26_1_a7
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 102-111
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/
%G ru
%F TIMM_2020_26_1_a7
A. R. Danilin. Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 102-111. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a7/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp.

[2] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR

[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp.

[4] Casas E., “A review on sparse solutions in optimal control of partial differential equations”, SeMA J., 74 (2017), 319–344 | DOI | MR | Zbl

[5] Lou H., Yong J., “Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls”, Math. Control Relat. Fields, 8:1 (2018), 57–88 | DOI | MR | Zbl

[6] Betz Livia M., “Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations”, SIAM J. Control Optim., 57:6 (2019), 4033–4062 | DOI | MR | Zbl

[7] Danilin A.R., Zorin A.P., “Asimptotika resheniya zadachi optimalnogo granichnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:4 (2009), 95–107

[8] Danilin A.R., Zorin A.P., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo granichnogo upravleniya”, Dokl. AN, 440:4 (2011), 1–4

[9] Zorin A.P., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo upravleniya ogranichennym potokom na granitse”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 115–121 | MR

[10] Kapustyan V.E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Cer. Matematika, estestvoznanie, tekhnicheskie nauki, 1992, no. 2, 70–74

[11] Danilin A.R., “Optimalnoe granichnoe upravlenie v oblasti s maloi polostyu”, Ufim. mat. zhurn., 4:2 (2012), 87–100 | MR

[12] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 540 pp. | MR

[13] Moren K., Metody gilbertova prostranstva, Mir, M., 1965, 570 pp.

[14] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp.

[15] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp.

[16] Vishik M.I., Lyusternik L.A., “Regulyaronoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | Zbl

[17] Ilin A.M., “Pogranichnyi sloi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 34, VINITI, M., 1988, 175–214