A Trajectory Minimizing the Exposure of a Moving Object
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 27-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A corridor $Y$ for the motion of an object is given in the space $X=\mathbb{R}^N$ ($N=2,3$). A finite number of emitters $s_i$ with fixed convex radiation cones $K(s_i)$ are located outside the corridor. The intensity of radiation $F(y)$, $y>0$, satisfies the condition $F(y)\ge \lambda F (\lambda y)$ for $y>0$ and $\lambda >1$. It is required to find a trajectory minimizing the value $$ J(\cal T)=\sum_{i}\int\limits_{0}^1 F\big(\|s_i-t(\tau)\|\big)\,d\tau $$ in the class of uniform motion trajectories $\cal T=\big\{ t(\tau)\colon 0\le \tau\le 1,\ t(0)=t_*,\ t(1)=t^*\big\}\subset Y$, $t_*,t^*\in \partial Y$, $t_*\ne t^*$. We propose methods for the approximate construction of optimal trajectories in the case where the multiplicity of covering the corridor $Y$ with the cones $K(s_i)$ is at most 2.
Mots-clés : navigation, irradiation
Keywords: optimal trajectory, moving object.
@article{TIMM_2020_26_1_a2,
     author = {V. I. Berdyshev and V. B. Kostousov},
     title = {A {Trajectory} {Minimizing} the {Exposure} of a {Moving} {Object}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--38},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/}
}
TY  - JOUR
AU  - V. I. Berdyshev
AU  - V. B. Kostousov
TI  - A Trajectory Minimizing the Exposure of a Moving Object
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 27
EP  - 38
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/
LA  - ru
ID  - TIMM_2020_26_1_a2
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%A V. B. Kostousov
%T A Trajectory Minimizing the Exposure of a Moving Object
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 27-38
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/
%G ru
%F TIMM_2020_26_1_a2
V. I. Berdyshev; V. B. Kostousov. A Trajectory Minimizing the Exposure of a Moving Object. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/

[1] Lyu V., “Metody planirovaniya puti v srede s prepyatstviyami (obzor)”, Matematika i mat. modelirovanie, 2018, no. 1, 15–58 | DOI

[2] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, Moskva, 2006, 144 pp.

[3] Korobkin V.V., Sesekin A.N., Tashlykov O.L., Chentsov A.G., Metody marshrutizatsii i ikh prilozheniya v zadachakh povysheniya bezopasnosti i effektivnosti atomnykh stantsii, Novye tekhnologii, Moskva, 2012, 234 pp.

[4] Chentsov A.G., Grigoryev A.M., Chentsov A.A., “Optimization “In windows” for routing problems with constraints”, Mathematical Optimization Theory and Operations Research, 18th International Conference (MOTOR 2019), Revised Selected Papers, Communications in Computer and Information Science, 1090 CCIS, eds. I. Bykadorov, V. Strusevich, T. Tchemisova, Springer Verlag, N Y, Berlin, 2019, 470–485 | DOI | MR