A Trajectory Minimizing the Exposure of a Moving Object
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 27-38
Voir la notice de l'article provenant de la source Math-Net.Ru
A corridor $Y$ for the motion of an object is given in the space $X=\mathbb{R}^N$ ($N=2,3$). A finite number of emitters $s_i$ with fixed convex
radiation cones $K(s_i)$ are located outside the corridor. The intensity of radiation $F(y)$, $y>0$, satisfies the condition $F(y)\ge \lambda F (\lambda y)$
for $y>0$ and $\lambda >1$.
It is required to find a trajectory minimizing the value
$$
J(\cal T)=\sum_{i}\int\limits_{0}^1 F\big(\|s_i-t(\tau)\|\big)\,d\tau
$$
in the class of uniform motion trajectories $\cal T=\big\{ t(\tau)\colon 0\le \tau\le 1,\ t(0)=t_*,\ t(1)=t^*\big\}\subset Y$, $t_*,t^*\in \partial Y$,
$t_*\ne t^*$.
We propose methods for the approximate construction of optimal trajectories in the case where the multiplicity of covering the corridor $Y$
with the cones $K(s_i)$ is at most 2.
Mots-clés :
navigation, irradiation
Keywords: optimal trajectory, moving object.
Keywords: optimal trajectory, moving object.
@article{TIMM_2020_26_1_a2,
author = {V. I. Berdyshev and V. B. Kostousov},
title = {A {Trajectory} {Minimizing} the {Exposure} of a {Moving} {Object}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {27--38},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/}
}
TY - JOUR AU - V. I. Berdyshev AU - V. B. Kostousov TI - A Trajectory Minimizing the Exposure of a Moving Object JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 27 EP - 38 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/ LA - ru ID - TIMM_2020_26_1_a2 ER -
V. I. Berdyshev; V. B. Kostousov. A Trajectory Minimizing the Exposure of a Moving Object. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a2/