Keywords: two-sided turns, three-dimensional reachable set, Pontryagin maximum principle, extremal piecewise constant control, sections of the reachable set along the angle coordinate, analytic description of the sections.
@article{TIMM_2020_26_1_a14,
author = {V. S. Patsko and A. A. Fedotov},
title = {Analytic description of a reachable set for the {Dubins} car},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {182--197},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a14/}
}
V. S. Patsko; A. A. Fedotov. Analytic description of a reachable set for the Dubins car. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 182-197. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a14/
[1] Robot motion planning and control, Lecture Notes in Control and Information Sciences, 229, ed. Laumond J.-P., Springer-Verlag, Berlin; Heidelberg, 1998, 354 pp. | DOI | MR
[2] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. TiSU, 2003, no. 3, 8–16 | MR | Zbl
[3] Simonenko A.S., Fedotov A.A., “Mnozhestvo dostizhimosti dlya avtomobilya Dubinsa pri nesimmetrichnom ogranichenii na upravlenie”, [e-resource], Modern Problems in Mathematics and its Applications, Proc. of 48th Internat. Youth School-Conf. (Yekaterinburg, 2017), CEUR-WS, 1894, 2017, 79–87 URL: http://ceur-ws.org/Vol-1894/opt6.pdf
[4] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp. | MR
[5] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[6] Dubins L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, American J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl