On an algorithm for the reconstruction of a perturbation in a nonlinear system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 156-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of reconstruction of an unknown perturbation in a system of nonlinear ordinary differential equations is considered. The methods of solution of such problems are well known. In this paper we study a problem with two peculiarities. First, it is assumed that the phase coordinates of the dynamical system are measured (with error) at discrete sufficiently frequent times. Second, the only information known about the perturbation acting on the system is that its Euclidean norm is square integrable; i.e., the perturbation can be unbounded. Since the exact reconstruction is impossible under these assumptions, we design a solution algorithm that is stable under information noise and computation errors. The algorithm is based on the combination of elements of the theory of ill-posed problems with the extremal shift method known in the theory of positional differential games.
Keywords: linear control systems
Mots-clés : dynamic reconstruction.
@article{TIMM_2020_26_1_a11,
     author = {V. K. Maksimov},
     title = {On an algorithm for the reconstruction of a perturbation in a nonlinear system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--166},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a11/}
}
TY  - JOUR
AU  - V. K. Maksimov
TI  - On an algorithm for the reconstruction of a perturbation in a nonlinear system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 156
EP  - 166
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a11/
LA  - ru
ID  - TIMM_2020_26_1_a11
ER  - 
%0 Journal Article
%A V. K. Maksimov
%T On an algorithm for the reconstruction of a perturbation in a nonlinear system
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 156-166
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a11/
%G ru
%F TIMM_2020_26_1_a11
V. K. Maksimov. On an algorithm for the reconstruction of a perturbation in a nonlinear system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 156-166. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a11/

[1] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[2] Kurzhanski A., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1996, 284 pp. | MR

[3] Ananev B.I., Gusev M.I., Filippova T.F., Upravlenie i otsenivanie sostoyanii dinamicheskikh sistem s neopredelennostyu, Izd-vo SO RAN, Novosibirsk, 2018, 193 pp.

[4] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Nekotorye algoritmy dinamicheskogo vosstanovleniya vkhodov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 29–161

[5] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[6] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011, 291 pp.

[7] Maksimov V.I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 65:4 (2001), 385–390 | MR

[8] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme dinamicheskogo vosstanovleniya vkhodnogo vozdeistviya”, Differents. uravneniya, 49:1 (2013), 88–100 | MR | Zbl

[9] Maksimov V.I., “On dynamical reconstruction of an input in a linear system under measuring a part of coordinates”, J. Inv. Ill-Posed Problems, 26:3 (2018), 395–410 | DOI | MR | Zbl

[10] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme rekonstruktsii traektorii i upravleniya v sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 109–122

[11] Kappel F., Kryazhimskii A.V., Maksimov V.I., “Dinamicheskaya rekonstruktsiya sostoyanii i garantiruyuschee upravlenie sistemoi reaktsii-diffuzii”, Dokl. AN, 370:5 (2000), 599–601 | MR | Zbl

[12] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[13] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 285 pp.

[14] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp.

[15] Maksimov V.I., “O vychislenii proizvodnoi funktsii zadannoi netochno s pomoschyu zakonov obratnoi svyazi”, Tr. MIRAN, 291 (2015), 231–243 | DOI | Zbl

[16] Fang H., Shi Y., Yu J., “On stable simultaneous input and state estimation for discrete-time linear systems”, Internat. J. Adaptiv. Contr. Signal Proc., 25:8 (2011), 671–686 | DOI | MR | Zbl

[17] Keller J.Y., Chabir K., Sauter D., “Input reconstruction for networked control systems subject to deception attacks and data losses on control signals”, Int. J. Syst. Sci., 47:4 (2016), 814–820 | DOI | MR | Zbl

[18] Keller J.Y., Sauter D., “Kalman filter for discrete-time stochastic linear systems subject to intermittent unknown inputs”, IEEE Trans. Autom. Contr., 58:7 (2013), 1882–1887 | DOI | MR | Zbl

[19] Chabir K., Sid M.A., and Sauter D., “Fault diagnosis in a networked control system under communication constraints: A quadrotor applications”, Int. J. Apll. Math. Comput. Sci., 24:4 (2014), 809–820 | DOI | MR | Zbl