Mots-clés : uncertain matrix, parallelotopes.
@article{TIMM_2020_26_1_a10,
author = {E. K. Kostousova},
title = {On {Polyhedral} {Estimation} of {Reachable} {Sets} in the {{\textquotedblleft}Extended{\textquotedblright}} {Space} for {Discrete-Time} {Systems} with {Uncertain} {Matrices} and {Integral} {Constraints}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {141--155},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a10/}
}
TY - JOUR AU - E. K. Kostousova TI - On Polyhedral Estimation of Reachable Sets in the “Extended” Space for Discrete-Time Systems with Uncertain Matrices and Integral Constraints JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 141 EP - 155 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a10/ LA - ru ID - TIMM_2020_26_1_a10 ER -
%0 Journal Article %A E. K. Kostousova %T On Polyhedral Estimation of Reachable Sets in the “Extended” Space for Discrete-Time Systems with Uncertain Matrices and Integral Constraints %J Trudy Instituta matematiki i mehaniki %D 2020 %P 141-155 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a10/ %G ru %F TIMM_2020_26_1_a10
E. K. Kostousova. On Polyhedral Estimation of Reachable Sets in the “Extended” Space for Discrete-Time Systems with Uncertain Matrices and Integral Constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 141-155. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a10/
[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.
[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[3] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes: theory and computation, Systems Control: Foundations Applications, 85, Birkhauser, Basel, 2014, 445 pp. | DOI | MR
[4] Kurzhanski A.B., Daryin A.N., Dynamic programming for impulse feedback and fast controls: The linear systems case, LNCIS, 468, Springer, London, 2020, 275 pp. | DOI | MR | Zbl
[5] Lotov A.V., “Metod postroeniya vneshnei poliedralnoi otsenki trubki traektorii nelineinoi dinamicheskoi sistemy”, Dokl. AN, 472:1 (2017), 18–22 | DOI | Zbl
[6] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differential Equations and Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl
[7] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl
[8] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp.
[9] Ananev B.I., Gusev M.I., Filippova T.F., Upravlenie i otsenivanie sostoyanii dinamicheskikh sistem s neopredelennostyu, Izd-vo SO RAN, Novosibirsk, 2018, 193 pp.
[10] Le V.T.H., Stoica C., Alamo T., Camacho E.F., Dumur D., Zonotopes: From guaranteed state-estimation to control, Wiley-ISTE, Croydon, 2013, 150 pp. | DOI
[11] Sharma U., Thangavel S., Gottu Mukkula A.R., Paulen R., “Effective recursive parallelotopic bounding for robust output-feedback control”, IFAC-PapersOnLine, 51:15 (2018), 1032–1037 | DOI
[12] Dreossi T., Dang T., Piazza C., “Reachability computation for polynomial dynamical systems”, Formal Methods in System Design, 50:1 (2017), 1–38 | DOI | Zbl
[13] Kostousova E.K., “O vneshnem poliedralnom otsenivanii mnozhestv dostizhimosti v “rasshirennom” prostranstve dlya lineinykh mnogoshagovykh sistem s integralnymi ogranicheniyami na upravlenie”, Vychisl. tekhnologii, 9:5 (2004), 54–72 | Zbl
[14] Tang W., Wang Z., Shen Y., “Interval Estimation methods for discrete-time linear time-invariant systems”, Systems Control Letters, 123 (2019), 69–74 | DOI | MR | Zbl
[15] Filippova T.F., Matviychuk O.G., “Estimates of reachable sets of control systems with bilinear-quadratic nonlinearities”, Ural Math. J., 1:1 (2015), 45–54 | DOI | Zbl
[16] Mazurenko S.S., “Partial differential equation for evolution of star-shaped reachability domains of differential inclusions”, Set-Valued Var. Anal., 24:2 (2016), 333–354 | DOI | MR | Zbl
[17] Sinyakov V.V., “Metod vychisleniya vneshnikh i vnutrennikh approksimatsii mnozhestv dostizhimosti bilineinykh differentsialnykh sistem”, Differents. uravneniya, 51:8 (2015), 1101–1114 | DOI | MR | Zbl
[18] Kostousova E.K., “O poliedralnykh otsenkakh mnozhestv dostizhimosti mnogoshagovykh sistem s bilineinoi neopredelennostyu”, Avtomatika i telemekhanika, 2011, no. 9, 49–60 | Zbl
[19] Kostousova E.K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC-PapersOnLine, 51:32 (2018), 245–250 | DOI
[20] Chernousko F.L., Rokityanskii D.Ya., “Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations”, J. Optim. Theory Appl., 104:1 (2000), 1–19 | DOI | MR | Zbl
[21] Kostousova E.K., “O poliedralnykh otsenkakh mnozhestv dostizhimosti differentsialnykh sistem s bilineinoi neopredelennostyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 195–210