Finite groups with supersoluble subgroups of given orders
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 155-163

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a finite group $G$ with the following property: for any of its maximal subgroups $H$, there exists a subgroup $H_1$ such that $|H_1|=|H|$ and $H_1\in \frak F$, where $\frak F$ is the formation of all nilpotent groups or all supersoluble groups. We prove that, if $\frak F=\frak N$ is the formation of all nilpotent groups and $G$ is nonnilpotent, then $|\pi (G)|=2$ and $G$ has a normal Sylow subgroup. For the formation $\frak F=\frak U$ of all supersoluble groups and a soluble group $G$ with the above property, we prove that $G$ is supersoluble, or $2\le |\pi (G)|\le 3$; if $|\pi (G)|=3$, then $G$ has a Sylow tower of supersoluble type; if $|\pi (G)|=2$, then either $G$ has a normal Sylow subgroup or, for the largest $p\in \pi (G)$, some maximal subgroup of a Sylow $p$-subgroup is normal in $G$. If $G$ is nonsoluble and, for each maximal subgroup of $G$, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of $G$ is isomorphic to $PSL_2(p)$ for some prime $p$; we list all such values of $p$.
Keywords: finite group, maximal subgroup, nilpotent subgroup, supersoluble subgroup.
Mots-clés : soluble group
@article{TIMM_2019_25_4_a16,
     author = {V. S. Monakhov and V. N. Tyutyanov},
     title = {Finite groups with supersoluble subgroups of given orders},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - V. N. Tyutyanov
TI  - Finite groups with supersoluble subgroups of given orders
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 155
EP  - 163
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/
LA  - ru
ID  - TIMM_2019_25_4_a16
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A V. N. Tyutyanov
%T Finite groups with supersoluble subgroups of given orders
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 155-163
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/
%G ru
%F TIMM_2019_25_4_a16
V. S. Monakhov; V. N. Tyutyanov. Finite groups with supersoluble subgroups of given orders. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 155-163. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/