Finite groups with supersoluble subgroups of given orders
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 155-163
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a finite group $G$ with the following property: for any of its maximal subgroups $H$, there exists a subgroup $H_1$ such that $|H_1|=|H|$ and $H_1\in \frak F$, where $\frak F$ is the formation of all nilpotent groups or all supersoluble groups. We prove that, if $\frak F=\frak N$ is the formation of all nilpotent groups and $G$ is nonnilpotent, then $|\pi (G)|=2$ and $G$ has a normal Sylow subgroup. For the formation $\frak F=\frak U$ of all supersoluble groups and a soluble group $G$ with the above property, we prove that $G$ is supersoluble, or $2\le |\pi (G)|\le 3$; if $|\pi (G)|=3$, then $G$ has a Sylow tower of supersoluble type; if $|\pi (G)|=2$, then either $G$ has a normal Sylow subgroup or, for the largest $p\in \pi (G)$, some maximal subgroup of a Sylow $p$-subgroup is normal in $G$. If $G$ is nonsoluble and, for each maximal subgroup of $G$, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of $G$ is isomorphic to $PSL_2(p)$ for some prime $p$; we list all such values of $p$.
Keywords:
finite group, maximal subgroup, nilpotent subgroup, supersoluble subgroup.
Mots-clés : soluble group
Mots-clés : soluble group
@article{TIMM_2019_25_4_a16,
author = {V. S. Monakhov and V. N. Tyutyanov},
title = {Finite groups with supersoluble subgroups of given orders},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {155--163},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/}
}
TY - JOUR AU - V. S. Monakhov AU - V. N. Tyutyanov TI - Finite groups with supersoluble subgroups of given orders JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 155 EP - 163 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/ LA - ru ID - TIMM_2019_25_4_a16 ER -
V. S. Monakhov; V. N. Tyutyanov. Finite groups with supersoluble subgroups of given orders. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 155-163. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/