Finite groups with supersoluble subgroups of given orders
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 155-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a finite group $G$ with the following property: for any of its maximal subgroups $H$, there exists a subgroup $H_1$ such that $|H_1|=|H|$ and $H_1\in \frak F$, where $\frak F$ is the formation of all nilpotent groups or all supersoluble groups. We prove that, if $\frak F=\frak N$ is the formation of all nilpotent groups and $G$ is nonnilpotent, then $|\pi (G)|=2$ and $G$ has a normal Sylow subgroup. For the formation $\frak F=\frak U$ of all supersoluble groups and a soluble group $G$ with the above property, we prove that $G$ is supersoluble, or $2\le |\pi (G)|\le 3$; if $|\pi (G)|=3$, then $G$ has a Sylow tower of supersoluble type; if $|\pi (G)|=2$, then either $G$ has a normal Sylow subgroup or, for the largest $p\in \pi (G)$, some maximal subgroup of a Sylow $p$-subgroup is normal in $G$. If $G$ is nonsoluble and, for each maximal subgroup of $G$, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of $G$ is isomorphic to $PSL_2(p)$ for some prime $p$; we list all such values of $p$.
Keywords: finite group, maximal subgroup, nilpotent subgroup, supersoluble subgroup.
Mots-clés : soluble group
@article{TIMM_2019_25_4_a16,
     author = {V. S. Monakhov and V. N. Tyutyanov},
     title = {Finite groups with supersoluble subgroups of given orders},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--163},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - V. N. Tyutyanov
TI  - Finite groups with supersoluble subgroups of given orders
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 155
EP  - 163
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/
LA  - ru
ID  - TIMM_2019_25_4_a16
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A V. N. Tyutyanov
%T Finite groups with supersoluble subgroups of given orders
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 155-163
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/
%G ru
%F TIMM_2019_25_4_a16
V. S. Monakhov; V. N. Tyutyanov. Finite groups with supersoluble subgroups of given orders. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 155-163. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a16/

[1] Shmidt O.Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31:3–4 (1924), 366–372 | Zbl

[2] Doerk K., “Minimal nicht uberauflosbare, endliche Gruppen”, Math. Z., 91:3 (1966), 198–205 | DOI | MR | Zbl

[3] Thompson J.G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74 (1968), 383–437 | DOI | MR | Zbl

[4] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, Minsk, 1978, 271 pp. | MR

[5] Monakhov V.S., Tyutyanov V.N., “O konechnykh gruppakh s nekotorymi podgruppami prostykh indeksov”, Sib. mat. zhurn., 48:4 (2007), 833–836 | MR | Zbl

[6] Huppert B., Endliche Gruppen I., Berlin; Heidelberg; N Y, 1967, 796 pp. | DOI | MR | Zbl

[7] Vdovin E.P., “Carter subgroups of finite groups”, Siberian Adv. Math., 19:1 (2009), 24–74 | DOI | MR

[8] Kazarin L.S., Korzyukov Yu.A., “Konechnye razreshimye gruppy so sverkhrazreshimymi maksimalnymi podgruppami”, Izv. vuzov. Matematika, 1980, no. 5, 22–27 | Zbl

[9] Gorenstein D., Finite groups, Harper and Row, N Y, 1968, 519 pp. | MR | Zbl

[10] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (247) (1986), 57–96 | MR | Zbl

[11] Li S., Shi W., “A note on the solvability of groups”, J. Algebra, 304:1 (2006), 278–285 | DOI | MR | Zbl

[12] Seitz G.M., “Flag-transitive subgroups of Chevalley groups”, Ann. Math., 97:1 (1973), 27–56 | DOI | MR | Zbl

[13] Gorenstein D., Lyons R., The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc, 42, Am. Math. Soc., Providence, RI, 1983, 731 pp. | DOI | MR

[14] Baumann B., “Endliche nichtauflosbare Gruppen mit einer nilpotenten maximalen Untergruppen”, J. Algebra, 38:1 (1975), 119–135 | DOI | MR

[15] Thompson J.G., “A special class of non solvable groups”, Math. Z., 72:1 (1960), 458–462 | DOI | MR | Zbl

[16] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp.

[17] Mazurov V.D., “Minimalnoe podstanovochnoe predstavlenie prostoi gruppy Tompsona”, Algebra i logika, 27:5 (1988), 562–580 | MR | Zbl

[18] Hall P., “Theorems like Sylow's”, Proc. Lond. Math. Soc. (3), s3-6:2 (1956), 286–304 | DOI | MR | Zbl

[19] Guralnick R.M., “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl