Finite Almost Simple 4-Primary Groups with Connected Gruenberg–Kegel Graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 142-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group. Denote by $\pi(G)$ the set of prime divisors of the order of $G$. The Gruenberg–Kegel graph (prime graph) of $G$ is the graph with the vertex set $\pi(G)$ in which two different vertices $p$ and $q$ are adjacent if and only if $G$ has an element of order $pq$. If $|\pi(G)|=n$, then the group $G$ is called $n$-primary. In 2011, A.S. Kondrat'ev and I.V. Khramtsov described finite almost simple 4-primary groups with disconnected Gruenberg–Kegel graph. In the present paper, we describe finite almost simple 4-primary groups with connected Gruenberg–Kegel graph. For each of these groups, its Gruenberg–Kegel graph is found. The results are presented in a table. According to the table, there are 32 such groups. The results are obtained with the use of the computer system GAP.
Keywords: finite group, almost simple group, 4-primary group, Gruenberg–Kegel graph.
@article{TIMM_2019_25_4_a14,
     author = {N. A. Minigulov},
     title = {Finite {Almost} {Simple} {4-Primary} {Groups} with {Connected} {Gruenberg{\textendash}Kegel} {Graph}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {142--146},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/}
}
TY  - JOUR
AU  - N. A. Minigulov
TI  - Finite Almost Simple 4-Primary Groups with Connected Gruenberg–Kegel Graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 142
EP  - 146
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/
LA  - ru
ID  - TIMM_2019_25_4_a14
ER  - 
%0 Journal Article
%A N. A. Minigulov
%T Finite Almost Simple 4-Primary Groups with Connected Gruenberg–Kegel Graph
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 142-146
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/
%G ru
%F TIMM_2019_25_4_a14
N. A. Minigulov. Finite Almost Simple 4-Primary Groups with Connected Gruenberg–Kegel Graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 142-146. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/

[1] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159

[2] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups. Number 3, Math. Surveys Monographs, 40.3, Amer. Math. Soc., Providence, RI, 1997, 420 pp. | DOI | MR

[3] Conway J.N., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Oxford University Press, Oxford, 1985, 252 pp. | MR | Zbl

[4] Bugeaud Y., Cao Z., Mignotte M., “On simple $K_4$-groups”, J. Algebra, 241:10 (2001), 658–668 | DOI | MR | Zbl

[5] Huppert B., Lempken W., “Simple groups of order divisible by at most four primes”, Izv. Gomel. Gos. Univ. Im. F. Skoriny. Vopr. Algebry, 2000, no. 3 (16), 64–75 | Zbl

[6] Shi W.J., “On simple $K_4$-groups”, Chinese Science Bull., 36 (17) (1991), 1281–1283 | DOI

[7] GAP System for Computational Discrete Algebra. Ver. 4.10.0, 2018 URL: http://www.gap-system.org