Finite Almost Simple 4-Primary Groups with Connected Gruenberg--Kegel Graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 142-146
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group. Denote by $\pi(G)$ the set of prime divisors of the order of $G$. The Gruenberg–Kegel graph (prime graph) of $G$ is the graph with the vertex set $\pi(G)$ in which two different vertices $p$ and $q$ are adjacent if and only if $G$ has an element of order $pq$. If $|\pi(G)|=n$, then the group $G$ is called $n$-primary. In 2011, A.S. Kondrat'ev and I.V. Khramtsov described finite almost simple 4-primary groups with disconnected Gruenberg–Kegel graph. In the present paper, we describe finite almost simple 4-primary groups with connected Gruenberg–Kegel graph. For each of these groups, its Gruenberg–Kegel graph is found. The results are presented in a table. According to the table, there are 32 such groups. The results are obtained with the use of the computer system GAP.
Keywords:
finite group, almost simple group, 4-primary group, Gruenberg–Kegel graph.
@article{TIMM_2019_25_4_a14,
author = {N. A. Minigulov},
title = {Finite {Almost} {Simple} {4-Primary} {Groups} with {Connected} {Gruenberg--Kegel} {Graph}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {142--146},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/}
}
TY - JOUR AU - N. A. Minigulov TI - Finite Almost Simple 4-Primary Groups with Connected Gruenberg--Kegel Graph JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 142 EP - 146 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/ LA - ru ID - TIMM_2019_25_4_a14 ER -
N. A. Minigulov. Finite Almost Simple 4-Primary Groups with Connected Gruenberg--Kegel Graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 142-146. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/