@article{TIMM_2019_25_4_a14,
author = {N. A. Minigulov},
title = {Finite {Almost} {Simple} {4-Primary} {Groups} with {Connected} {Gruenberg{\textendash}Kegel} {Graph}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {142--146},
year = {2019},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/}
}
N. A. Minigulov. Finite Almost Simple 4-Primary Groups with Connected Gruenberg–Kegel Graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 142-146. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a14/
[1] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159
[2] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups. Number 3, Math. Surveys Monographs, 40.3, Amer. Math. Soc., Providence, RI, 1997, 420 pp. | DOI | MR
[3] Conway J.N., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Oxford University Press, Oxford, 1985, 252 pp. | MR | Zbl
[4] Bugeaud Y., Cao Z., Mignotte M., “On simple $K_4$-groups”, J. Algebra, 241:10 (2001), 658–668 | DOI | MR | Zbl
[5] Huppert B., Lempken W., “Simple groups of order divisible by at most four primes”, Izv. Gomel. Gos. Univ. Im. F. Skoriny. Vopr. Algebry, 2000, no. 3 (16), 64–75 | Zbl
[6] Shi W.J., “On simple $K_4$-groups”, Chinese Science Bull., 36 (17) (1991), 1281–1283 | DOI
[7] GAP System for Computational Discrete Algebra. Ver. 4.10.0, 2018 URL: http://www.gap-system.org