Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 129-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Inequalities of the form $\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta\|_p\le B_n(\alpha,\theta)_p \|f_n\|_p$ for classical derivatives of order $\alpha\in\mathbb{N}$ and Weyl derivatives of real order $\alpha\ge 0$ of trigonometric polynomials $f_n$ of order $n\ge 1$ and their conjugates for real $\theta$ and $0\le p\le \infty$ are called Bernstein–Szegő inequalities. They are generalizations of the classical Bernstein inequality ($\alpha=1$, $\theta=0$, $p=\infty$). Such inequalities have been studied for more than 90 years. The problem of studying the Bernstein–Szegő inequality consists in analyzing the properties of the best (the smallest) constant $B_n(\alpha,\theta)_p$, its exact value, and extremal polynomials for which this inequality turns into an equality. G. Szegő (1928), A. Zygmund (1933), and A. I. Kozko (1998) showed that, in the case $p\ge 1$ for real $\alpha\ge 1$ and any real $\theta$, the best constant $B_n(\alpha,\theta)_p$ is $n^\alpha$. For $p=0$, Bernstein–Szegő inequalities are of interest at least because the constant $B_n(\alpha,\theta)_p$ is the largest for $p=0$ over $0\le p\le\infty$. In 1981, V. V. Arestov proved that, for $r\in\mathbb{N}$ and $\theta=0$, the Bernstein inequality is true with the constant $n^r$ in the spaces $L_p$, $0\le p1$; i.e., $B_n(r,0)_p=n^r$. In 1994, he proved that, for $p=0$ and the derivative of the conjugate polynomial of order $r\in\mathbb{N}\cup\{0 \}$, i.e., for $\theta=\pi/2$, the exact constant grows exponentially in $n$; more precisely, $B_n(r,\pi/2)_0=4^{n+o(n)}$. In two recent papers of the author (2018), a similar result was obtained for Weyl derivatives of positive noninteger order for any real $\theta$. In the present paper, we prove that the formula $B_n(\alpha,\theta)_0=4^{n+o(n)}$ holds for derivatives of nonnegative integer orders $\alpha$ and any real $\theta\neq \pi k,\,k\in\mathbb{Z}$.
Keywords: trigonometric polynomial, Weyl derivative, Bernstein–Szegő inequality, space $L_0$.
Mots-clés : conjugate polynomial
@article{TIMM_2019_25_4_a12,
     author = {A. O. Leonteva},
     title = {Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--135},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a12/}
}
TY  - JOUR
AU  - A. O. Leonteva
TI  - Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 129
EP  - 135
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a12/
LA  - ru
ID  - TIMM_2019_25_4_a12
ER  - 
%0 Journal Article
%A A. O. Leonteva
%T Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 129-135
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a12/
%G ru
%F TIMM_2019_25_4_a12
A. O. Leonteva. Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 129-135. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a12/

[1] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18

[2] Arestov V. V., “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Mat. zametki, 56:6 (1994), 10–26 | Zbl

[3] Leonteva A. O., “Neravenstvo Bernshteina dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Mat. zametki, 104:2 (2018), 255–264 | DOI | MR | Zbl

[4] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 391 pp. ; т. 2, 431 с. | MR

[5] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.

[6] Arestov V. V., “Sharp integral inequalities for trigonometric polynomials”, Constructive theory of functions, Proc. Internat. Conf., in memory of Borislav Bojanov (Sozopol, 2010), eds. G. Nikolov and R. Uluchev, Prof. Marin Drinov Academic Publishing House, Sofia, 2012, 30–45 | MR

[7] Arestov V. V., Glazyrina P. Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164 (2012), 1501–1512 | DOI | MR | Zbl

[8] Marden M., The geometry of the zeros of polynomials in a complex variable, Math. Survey, no. 3, Amer. Math. Soc., N Y, 1949, 184 pp. | MR

[9] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 62:1–2 (1917), 296–302 | MR | Zbl