Mots-clés : conjugate polynomial
@article{TIMM_2019_25_4_a12,
author = {A. O. Leonteva},
title = {Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {129--135},
year = {2019},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a12/}
}
A. O. Leonteva. Bernstein-Szego inequality for trigonometric polynomials in the space $L_0$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 129-135. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a12/
[1] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18
[2] Arestov V. V., “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Mat. zametki, 56:6 (1994), 10–26 | Zbl
[3] Leonteva A. O., “Neravenstvo Bernshteina dlya proizvodnykh Veilya trigonometricheskikh polinomov v prostranstve $L_0$”, Mat. zametki, 104:2 (2018), 255–264 | DOI | MR | Zbl
[4] Polia G., Sege G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 391 pp. ; т. 2, 431 с. | MR
[5] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 638 pp.
[6] Arestov V. V., “Sharp integral inequalities for trigonometric polynomials”, Constructive theory of functions, Proc. Internat. Conf., in memory of Borislav Bojanov (Sozopol, 2010), eds. G. Nikolov and R. Uluchev, Prof. Marin Drinov Academic Publishing House, Sofia, 2012, 30–45 | MR
[7] Arestov V. V., Glazyrina P. Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164 (2012), 1501–1512 | DOI | MR | Zbl
[8] Marden M., The geometry of the zeros of polynomials in a complex variable, Math. Survey, no. 3, Amer. Math. Soc., N Y, 1949, 184 pp. | MR
[9] Weyl H., “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 62:1–2 (1917), 296–302 | MR | Zbl