Semifield planes of rank 2 admitting the group $S_3$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 118-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One of the classical problems in projective geometry is to construct an object from known constraints on its automorphisms. We consider finite projective planes coordinatized by a semifield, i.e., by an algebraic system satisfying all axioms of a skew-field except for the associativity of multiplication. Such a plane is a translation plane admitting a transitive elation group with an affine axis. Let $\pi$ be a semifield plane of order $p^{2n}$ with a kernel containing $GF(p^n)$ for prime $p$, and let the linear autotopism group of $\pi$ contain a subgroup $H$ isomorphic to the symmetric group $S_3$. For the construction and analysis of such planes, we use a linear space and a spread set, which is a special family of linear mappings. We find a matrix representation for the subgroup $H$ and for the spread set of a semifield plane if $p=2$ and if $p>2$. We also study the existence of central collineations in $H$. It is proved that a semifield plane of order $3^{2n}$ with kernel $GF(3^n)$ admits no subgroups isomorphic to $S_3$ in the linear autotopism group. Examples of semifield planes of order 16 and 625 admitting $S_3$ are found. The obtained results can be generalized for semifield planes of rank greater than 2 and can be applied, in particular, for studying the known hypothesis that the full collineation group of any finite non-Desarguesian semifield plane is solvable.
Keywords: semifield plane, symmetric group, Baer involution, homology, spread set.
Mots-clés : autotopism group
@article{TIMM_2019_25_4_a11,
     author = {O. V. Kravtsova and T. V. Moiseenkova},
     title = {Semifield planes of rank 2 admitting the group $S_3$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {118--128},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/}
}
TY  - JOUR
AU  - O. V. Kravtsova
AU  - T. V. Moiseenkova
TI  - Semifield planes of rank 2 admitting the group $S_3$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 118
EP  - 128
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/
LA  - ru
ID  - TIMM_2019_25_4_a11
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%A T. V. Moiseenkova
%T Semifield planes of rank 2 admitting the group $S_3$
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 118-128
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/
%G ru
%F TIMM_2019_25_4_a11
O. V. Kravtsova; T. V. Moiseenkova. Semifield planes of rank 2 admitting the group $S_3$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 118-128. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/

[1] Mazurov V.D., Khukhro E.I., Nereshennye voprosy teorii grupp. Kourovskaya tetrad, izd. 16-e, dop., vklyuchayuschee arkhiv reshennykh zadach, In-t matematiki im. S.L. Soboleva SO RAN, Novosibirsk, 2006, 193 pp.

[2] Podufalov N.D., Durakov B.K., Kravtsova O.V., Durakov E.B., “O polupolevykh ploskostyakh poryadka $16^2$”, Sib. mat. zhurn., 37:3 (1996), 616–623 | MR | Zbl

[3] Jha V., Johnson N.L., “The translation planes of order 81 admitting SL(2,5)”, Note di Matematica, 24:2 (2005), 59–73 | DOI | MR | Zbl

[4] Biliotti M., Jha V., Johnson N.L., Menichetti G., “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | DOI | MR | Zbl

[5] Levchuk V.M., Kravtsova O.V., “Problems on structure of finite quasifelds and projective translation planes”, Lobachevskii J. Math., 38:4 (2017), 688–698 | DOI | MR | Zbl

[6] Rua I.F., Combarro E.F., Ranilla J., “Classification of semifields of order 64”, J. Algebra, 322:11 (2009), 4011–4029 | DOI | MR | Zbl

[7] Kravtsova O.V., Moiseenkova T.V., “Polupolevye proektivnye ploskosti, dopuskayuschie podgruppu kollineatsii, izomorfnuyu $S_3$”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, materialy Mezhdunar. konf. posvyaschennoi 80-letiyu so dnya rozhdeniya professora Mishelya Deza, Izd-vo Tulskogo gos. ped. un-ta im. L.N. Tolstogo, Tula, 2019, 260–262

[8] Hughes D.R., Piper F.C., Projective planes, Springer-Verlag, N Y, 1973, 292 pp. | MR | Zbl

[9] Johnson N.L., Jha V., and Biliotti M., Handbook of finite translation planes, Chapman and Hall, Boca Raton; London; N Y, 2007, 861 pp. | MR | Zbl

[10] Kravtsova O.V., “Polupolevye ploskosti, dopuskayuschie berovskuyu involyutsiyu”, Izv. Irkut. gos. un-ta. Ser. Matematika, 2013, no. 2, 26–38

[11] Vaughan, T.P., “Polynomials and linear transformations over finite fields”, J. Reine Angew. Math., 267 (1974), 179–206 | DOI | MR | Zbl

[12] Huang H. , Johnson N.L., “8 semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | DOI | MR | Zbl