Semifield planes of rank 2 admitting the group $S_3$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 118-128

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the classical problems in projective geometry is to construct an object from known constraints on its automorphisms. We consider finite projective planes coordinatized by a semifield, i.e., by an algebraic system satisfying all axioms of a skew-field except for the associativity of multiplication. Such a plane is a translation plane admitting a transitive elation group with an affine axis. Let $\pi$ be a semifield plane of order $p^{2n}$ with a kernel containing $GF(p^n)$ for prime $p$, and let the linear autotopism group of $\pi$ contain a subgroup $H$ isomorphic to the symmetric group $S_3$. For the construction and analysis of such planes, we use a linear space and a spread set, which is a special family of linear mappings. We find a matrix representation for the subgroup $H$ and for the spread set of a semifield plane if $p=2$ and if $p>2$. We also study the existence of central collineations in $H$. It is proved that a semifield plane of order $3^{2n}$ with kernel $GF(3^n)$ admits no subgroups isomorphic to $S_3$ in the linear autotopism group. Examples of semifield planes of order 16 and 625 admitting $S_3$ are found. The obtained results can be generalized for semifield planes of rank greater than 2 and can be applied, in particular, for studying the known hypothesis that the full collineation group of any finite non-Desarguesian semifield plane is solvable.
Keywords: semifield plane, symmetric group, Baer involution, homology, spread set.
Mots-clés : autotopism group
@article{TIMM_2019_25_4_a11,
     author = {O. V. Kravtsova and T. V. Moiseenkova},
     title = {Semifield planes of rank 2 admitting the group $S_3$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/}
}
TY  - JOUR
AU  - O. V. Kravtsova
AU  - T. V. Moiseenkova
TI  - Semifield planes of rank 2 admitting the group $S_3$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 118
EP  - 128
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/
LA  - ru
ID  - TIMM_2019_25_4_a11
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%A T. V. Moiseenkova
%T Semifield planes of rank 2 admitting the group $S_3$
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 118-128
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/
%G ru
%F TIMM_2019_25_4_a11
O. V. Kravtsova; T. V. Moiseenkova. Semifield planes of rank 2 admitting the group $S_3$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 118-128. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a11/