Minimal submanifolds of spheres and cones
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 100-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Intersections of cones of index zero with spheres are investigated. Fields of the corresponding minimal manifolds are found. In particular, we consider the cone $\mathbb{K} =\{x_0^2+x_1^2=x_2^2+x_3^2\}$. Its intersection with the sphere $\mathbb{S}^3=\sum_{i=0}^3x_i^2$ is often called the Clifford torus $\mathbb{T}$, because Clifford was the first to notice that the metric of this torus as a submanifold of $\mathbb{S}^3$ with the metric induced from $\mathbb{S}^3$ is Euclidian. In addition, the torus $\mathbb{T}$ considered as a submanifold of $\mathbb{S}^3$ is a minimal surface. Similarly, it is possible to consider the cone $\mathcal{K} =\{\sum_{i=0}^3x_i^2=\sum_{i=4}^7x_i^2\}$, often called the Simons cone because he proved that $\mathcal{K}$ specifies a single-valued nonsmooth globally defined minimal surface in $\mathbb{R}^8$ which is not a plane. It appears that the intersection of $\mathcal{K}$ with the sphere $\mathbb{S}^7$, like the Clifford torus, is a minimal submanifold of $\mathbb{S}^7$. These facts are proved by using the technique of quaternions and the Cayley algebra.
Keywords: minimal surface, gaussian curvature, octonions (Cayley numbers), field of extremals, Weierstrass function.
Mots-clés : quaternions
@article{TIMM_2019_25_3_a8,
     author = {M. I. Zelikin and Yu. S. Osipov},
     title = {Minimal submanifolds of spheres and cones},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {100--107},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a8/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - Yu. S. Osipov
TI  - Minimal submanifolds of spheres and cones
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 100
EP  - 107
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a8/
LA  - ru
ID  - TIMM_2019_25_3_a8
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A Yu. S. Osipov
%T Minimal submanifolds of spheres and cones
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 100-107
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a8/
%G ru
%F TIMM_2019_25_3_a8
M. I. Zelikin; Yu. S. Osipov. Minimal submanifolds of spheres and cones. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 100-107. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a8/

[1] Caratheodory C., “Über die Variationsrechnung bei mehrfachen Integralen”, Acta Szeged, 4 (1929), 193–216 | Zbl

[2] Clifford W.K., “On a surface of zero curvature and finite extent”, Proc. London Math. Soc., 4 (1873), 381–395 | MR

[3] Osipov Yu.S., Zelikin M.I., “Multidimensional generalization of Jacobi envelope theorem”, Russian J. Math. Phys., 19:1 (2012), 101–106 | DOI | MR | Zbl

[4] Postnikov M.M., Gruppy i algebry Li. Lektsii po geometrii. Semestr V, Nauka, Moskva, 1982, 447 pp.

[5] Simons J., “Minimal varieties in Riemannian manifold”, Ann. Math., 88 (1969), 62–105 | DOI | MR

[6] Weyl H., “Geodesic fields in the calculus of variations for multiple integrals”, Ann. Math., 36 (1935), 607–629 | DOI | MR

[7] Zelikin M.I., “Theory of fields for multiple integrals”, Russian Math. Surveys, 66:4 (2011), 103–136 | DOI | MR | Zbl