Mots-clés : interpolation classes.
@article{TIMM_2019_25_2_a5,
author = {A. A. Vasil'eva},
title = {Kolmogorov widths of {Sobolev} classes on a closed interval with constraints on the variation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {48--66},
year = {2019},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a5/}
}
TY - JOUR AU - A. A. Vasil'eva TI - Kolmogorov widths of Sobolev classes on a closed interval with constraints on the variation JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 48 EP - 66 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a5/ LA - ru ID - TIMM_2019_25_2_a5 ER -
A. A. Vasil'eva. Kolmogorov widths of Sobolev classes on a closed interval with constraints on the variation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 48-66. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a5/
[1] Vasileva A.A., “Kriterii suschestvovaniya gladkoi funktsii pri ogranicheniyakh”, Mat. zametki, 82:3 (2007), 335–346 | DOI | MR | Zbl
[2] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.
[3] Tikhomirov V.M., “Teoriya priblizhenii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, Itogi nauki i tekhniki, 14, VINITI AN SSSR, Moskva, 1987, 103–260
[4] Pinkus A., n-widths in approximation theory, Springer, Berlin, 1985, 294 pp. | DOI | MR | Zbl
[5] Galeev E.M., “Poperechniki po Kolmogorovu peresecheniya klassov periodicheskikh funktsii i konechnomernykh mnozhestv”, Mat. zametki, 29:5 (1981), 749–760 | MR | Zbl
[6] Galeev E.M., “Poperechniki po Kolmogorovu nekotorykh konechnomernykh mnozhestv v smeshannoi norme”, Mat. zametki, 58:1 (1995), 144–148 | MR | Zbl
[7] Galeev E.M., “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii odnoi i neskolkikh peremennykh”, Izv. AN SSSR. Ser. matematicheskaya, 54:2 (1990), 418–430
[8] Galeev E.M., “Poperechniki funktsionalnykh klassov i konechnomernykh mnozhestv”, Vladikavkazskii mat. zhurn., 13:2 (2011), 3–14 | MR | Zbl
[9] Gluskin E.D., “Peresecheniya kuba s oktaedrom plokho approksimiruyutsya podprostranstvami maloi razmernosti”, Priblizhenie funktsii spetsialnymi klassami operatorov, mezhvuz. sb. nauchn. tr., Min. pros. RSFSR; Vologodskii gos. ped. in-t, Vologda, 1987, 35–41 | MR
[10] Izaak A.D., “Poperechniki po Kolmogorovu v konechnomernykh prostranstvakh so smeshannoi normoi”, Mat. zametki, 55:1 (1994), 43–52 | MR | Zbl
[11] Izaak A.D., “Poperechniki klassov Geldera - Nikolskogo i konechnomernykh mnozhestv v prostranstvakh so smeshannoi normoi”, Mat. zametki, 59:3 (1996), 459–461 | DOI | MR | Zbl
[12] Malykhin Yu.V., Ryutin K.S., “Proizvedenie oktaedrov plokho priblizhaetsya v metrike $\ell_{2,1}$”, Mat. zametki, 101:1 (2017), 85–90 | DOI | MR | Zbl
[13] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie trigonometricheskimi mnogochlenami”, Uspekhi mat. nauk, 29:3 (1974), 161–178 | MR | Zbl
[14] Kashin B.S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Cer. matematicheskaya, 41:2 (1977), 334–351 | MR | Zbl
[15] Gluskin E.D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Mat. sbornik, 120 (162):2 (1983), 180–189 | MR | Zbl
[16] Maiorov V.E., “Diskretizatsiya zadachi o poperechnikakh”, Uspekhi mat. nauk, 30:6 (1975), 179–180 | MR | Zbl
[17] Gluskin E.D., “O nekotorykh konechnomernykh zadachakh teorii poperechnikov”, Vestn. LGU, 13 (1981), 5–10 | Zbl
[18] Ioffe A.D., Tikhomirov V.M., “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, Uspekhi mat. nauk, 23:6 (1968), 51–116 | MR | Zbl
[19] Fabian M., Habala P., Hajek P., Montesinos Santalucia V., Pelant J., Zizler V., Functional analysis and infinite-dimensional geometry, Ser. CMS Books in Math., Springer, N Y, 2001, 451 pp. | DOI | MR | Zbl