Supercompact spaces of ultrafilters and maximal linked systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 240-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider maximal linked systems and ultrafilters of broadly understood measurable spaces; each of these measurable spaces is defined by a $\pi$-system of subsets of a nonempty set with “zero” and “one” (a $\pi$-system is a family of sets closed under finite intersections). There are specific types of $\pi$-systems: semialgebras and algebras of sets as well as topologies and families of closed sets in topological spaces. The problem of supercompactness of an ultrafilter space equipped by a Wallman type topology is studied, and certain properties of bitopological spaces whose points are maximal linked systems and ultrafilters of the corresponding measurable space are analyzed. We also investigate conditions on a measurable space under which maximal linked systems and ultrafilters can be identified, which makes it possible to equip a set of ultrafilters with a supercompact topology of Wallman type by means of a direct application of a similar construction of the space of maximal linked systems. We also give some variants of measurable spaces with algebras of sets for which the Wallman topology of the ultrafilter space is supercompact, although, in general, there exist maximal linked systems of the corresponding measurable space that are not ultrafilters. This scheme is based on a special construction of homeomorphism for Wallman topologies. We give specific examples of measurable spaces for which the supercompact ultrafilter space is realized.
Keywords: algebra of sets, homeomorphism, maximal linked system, ultrafilter.
@article{TIMM_2019_25_2_a21,
     author = {A. G. Chentsov},
     title = {Supercompact spaces of ultrafilters and maximal linked systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {240--257},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a21/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Supercompact spaces of ultrafilters and maximal linked systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 240
EP  - 257
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a21/
LA  - ru
ID  - TIMM_2019_25_2_a21
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Supercompact spaces of ultrafilters and maximal linked systems
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 240-257
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a21/
%G ru
%F TIMM_2019_25_2_a21
A. G. Chentsov. Supercompact spaces of ultrafilters and maximal linked systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 240-257. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a21/

[1] Groot J.de, “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis, Berlin, 1969, 89–90

[2] Mill J. van., Supercompactness and Wallman spaces, Amsterdam. Math. Center Tract., 85, 1977, 238 pp. | MR | Zbl

[3] Strok M., Szymanski A., “Compact metric spaces have binary subbases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[4] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006, 336 pp.

[5] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[6] Chentsov A. G., “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. In-ta matematiki i informatiki UdGU, 49 (2017), 55–79 | DOI | Zbl

[7] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2017, no. 3, 122–141 | DOI

[8] Chentsov A. G., “Bitopologicheskie prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:1 (2018), 257–272 | DOI | MR

[9] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. In-ta matematiki i informatiki UdGU, 52 (2018), 86–102 | DOI

[10] Dvalishvili B. P., Bitopological spaces: Theory, relations with generalized algebraic structures, and applications, Ser. Nort-Holland Mathematics Studies, 199, 2005, 422 pp. | MR | Zbl

[11] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[12] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Ser. “Sovremennye problemy matematiki. Fundamentalnye napravleniya”, 50 (1989), 7–128

[13] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “O tochkakh odnogo bikompaktnogo rasshireniya N”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 10–17

[14] Gryzlov A. A., Golovastov R. A., “O prostranstvakh Stouna nekotorykh bulevykh algebr”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 11–16 | Zbl

[15] Golovastov R. A., “O prostranstve Stouna odnoi bulevoi algebry”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 3, 19–24 | Zbl

[16] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[17] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004, 368 pp.

[18] Chentsov A. G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2014, no. 1, 87–101 | Zbl

[19] Chentsov A. G., Elementy konechno-additivnoi teorii mery, I, Ural. gos. tekhn. un-t - UPI, Ekaterinburg, 2008, 388 pp.

[20] Chentsov A. G., “Preobrazovaniya ultrafiltrov i ikh primenenie v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 3, 85–102 | MR | Zbl

[21] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Acad. Publ, Dordrecht; Boston; London, 2002, 408 pp. | MR | Zbl

[22] Chentsov A. G., “Ob odnom predstavlenii rezultatov deistviya priblizhennykh reshenii v zadache s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 225–239

[23] Bogachev V .I., Slabaya skhodimost mer, Izd-vo In-ta kompyuternykh issledovanii, Moskva; Izhevsk, 2016, 395 pp.

[24] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp.

[25] Chentsov A. G., “K voprosu o predstavlenii kompaktov Stouna”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 4, 156–174 | Zbl

[26] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum, N Y, 1996, 244 pp. | MR | Zbl