@article{TIMM_2019_25_2_a17,
author = {F. S. Stonyakin},
title = {On the {Adaptive} {Proximal} {Method} for a {Class} of {Variational} {Inequalities} and {Related} {Problems}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {185--197},
year = {2019},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a17/}
}
TY - JOUR AU - F. S. Stonyakin TI - On the Adaptive Proximal Method for a Class of Variational Inequalities and Related Problems JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 185 EP - 197 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a17/ LA - ru ID - TIMM_2019_25_2_a17 ER -
F. S. Stonyakin. On the Adaptive Proximal Method for a Class of Variational Inequalities and Related Problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 185-197. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a17/
[1] Facchinei F., Pang J. S., Finite-dimensional variational inequality and complementarity problems, Vols 1 and 2, v. 1, Springer-Verlag, N Y, 2003, 693 pp. ; v. 2, 704 pp. | DOI | MR | DOI
[2] Antipin A. S., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 40:9 (2000), 1291–1307 | MR | Zbl
[3] Antipin A. S., Yachimovich V., Yachimovich M., “Dinamika i variatsionnye neravenstva”, Zhurn. vychisl. matematiki i mat. fiziki, 57:5 (2017), 783–800 | DOI | Zbl
[4] Konnov I. V., Salakhutdin R. A., “Dvukhurovnevyi iterativnyi metod dlya nestatsionarnykh smeshannykh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 2017, no. 10, 50–61 | Zbl
[5] Bao T. Q., Khanh P. Q., “Some algorithms for solving mixed variational inequalities”, Acta Mathem. Vietnamica, 31:1 (2006), 77–98 | DOI | MR | Zbl
[6] Chambolle A., Pock T., “A first-order primal-dual algorithm for convex problems with applications to imaging”, J. Math. Imag. Vis., 40:120 (2011) | DOI | MR | Zbl
[7] Guzman C., Nemirovski A., “On lower complexity bounds for large-scale smooth convex optimization”, J. Complexity, 31:1 (2015), 1–14 | DOI | MR | Zbl
[8] Nemirovski A., “Prox-method with rate of convergence $O(1/T)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems”, SIAM J. Optim., 15:1 (2004), 229–251 | DOI | MR | Zbl
[9] Melenchuk N. V., Metody i algoritmy dlya resheniya zadach matematicheskogo modelirovaniya na osnove variatsionnykh neravenstv, dis. $\dots$ kand. fiz.-mat. nauk, Omsk, 2011, 123 pp.
[10] Nesterov Yu., “Dual extrapolation and its application for solving variational inequalities and related problems”, Math. Program. Ser. B, 2007, 319–344 | DOI | MR | Zbl
[11] Nesterov Yu., Scrimali L., “Solving strongly monotone variational and quasi-variational inequalities”, Discr. Contin. Dynam. Syst. Ser. A., 31:4 (2011), 1383–1396 | DOI | MR | Zbl
[12] Nesterov Yu. E., Algoritmicheskaya vypuklaya optimizatsiya, dis. $\dots$ d-r fiz.-mat. nauk, Mosk. fiz.-tekhn. in-t, M., 2013, 367 pp.
[13] Korpelevich G. M., “Ekstragradientnyi metod dlya otyskaniya sedlovykh tochek i drugikh zadach”, Ekonomika i mat. metody, 12:4 (1976), 747–756 | MR | Zbl
[14] Nesterov Yu., “Universal gradient methods for convex optimization problems”, Math. Program. Ser. A, 152:1-2 (2015), 381–404 | DOI | MR | Zbl
[15] Gasnikov A. V., Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska, ucheb. posobie, Izd-vo MFTI, Moskva, 2018, 160 pp.
[16] Gasnikov A. V., Dvurechenckii P. E., Stonyakin F. S., Titov A. A., “Adaptivnyi proksimalnyi metod dlya variatsionnykh neravenstv”, Zhurn. vychisl. matematiki i mat. fiziki, 59:5 (2019), 889–894 | DOI
[17] Nemirovskii A. S., Yudin D. B., Slozhnost zadach i effektivnost metodov optimizatsii, Nauka, Moskva, 1979, 384 pp.
[18] Nemirovski A., Information-based complexity of convex programming, Technion, Fall Semester 1994/95, The Israel institute of technology faculty of industrial engineering management, 268 pp. https://www2.isye.gatech.edu/nemirovs/Lect_EMCO.pdf
[19] Devolder O., Glineur F., Nesterov Yu., “First-order methods of smooth convex optimization with inexact oracle”, Math. Progr., 146:1-2 (2014), 37–75 | DOI | MR | Zbl
[20] Antipin A. S., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zhurn. vychisl. matematiki i mat. fiziki, 37:11 (1997), 1327–1339 | MR | Zbl
[21] Vedel Ya. I., Semenov V. V., “Novyi dvukhetapnyi proksimalnyi algoritm dlya resheniya zadachi o ravnovesii”, Zhurn. vychisl. i prikl. matematiki, 118:1 (2015), 15–23 | MR
[22] Ben-Tal A., Nemirovski A., Lectures on modern convex optimization, SIAM, Philadelphia, 2001, 500 pp. | MR | Zbl
[23] Mastroeni G., “On auxiliary principle for equilibrium problems”, Publicatione del Departimento di Mathematica Dell'Universita di Pisa, 3 (2000), 1244–1258