Mots-clés : Hausdorff dimension.
@article{TIMM_2019_25_2_a10,
author = {K. G. Kamalutdinov},
title = {Self-intersections in parametrized self-similar sets under translations and extensions of copies},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {116--124},
year = {2019},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/}
}
TY - JOUR AU - K. G. Kamalutdinov TI - Self-intersections in parametrized self-similar sets under translations and extensions of copies JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 116 EP - 124 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/ LA - ru ID - TIMM_2019_25_2_a10 ER -
K. G. Kamalutdinov. Self-intersections in parametrized self-similar sets under translations and extensions of copies. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 116-124. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/
[1] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[2] Marstrand J. M., “Some fundamental geometrical properties of plane sets of fractional dimensions”, Proc. Lond. Math. Soc., s3-4:1 (1954), 257–302 | DOI | MR | Zbl
[3] Mattila P., “Hausdorff dimension and capacities of intersections of sets in $n$-space”, Acta Math., 152 (1984), 77–105 | DOI | MR | Zbl
[4] Falconer K. J., “Dimensions of intersections and distance sets for polyhedral norms”, Real Anal. Exchange, 30:2 (2004), 719–726 | DOI | MR
[5] Pollicott M., Simon K., “The Hausdorff dimension of $\lambda$-expansions with deleted digits”, Trans. Am. Math. Soc., 347:3 (1995), 967–983 | DOI | MR | Zbl
[6] Kamalutdinov K. G., Tetenov A. V., “Twofold Cantor sets in $\mathbb R$”, Sib. elektron. mat. izv., 15 (2018), 801–814 | DOI | MR | Zbl
[7] Falconer K. J., Fractal geometry: mathematical foundations and applications, 3rd ed., J. Wiley and Sons, N Y, 2014, 398 pp. | MR | Zbl
[8] Edgar G., Measure, Topology, and Fractal Geometry, 2nd ed., Springer-Verlag, New York, 2008, 272 pp. | DOI | MR | Zbl
[9] Kuratowski K., Topology, v. 2, Acad. Press, N Y; London, 1968, 608 pp.