Self-intersections in parametrized self-similar sets under translations and extensions of copies
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 116-124

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of pairwise intersections $F_i(K_t)\cap F_j^t (K_t)$ of different copies of a self-similar set $K_t$ generated by a system $\mathcal F_t=\{F_1,\dots,F_m\}$ of contracting similarities in $\mathbb R^n$, where one mapping $F_j^t$ depends on a real or vector parameter $t$. Two cases are considered: the parameter $t\in \mathbb R^n$ specifies a translation of a mapping $F_j^t(x) = G(x)+t$, and the parameter $t\in (a,b)$ is the similarity coefficient of a mapping $F_j^t(x)=tG(x)+h$, where $0$ and $G$ is an isometry of $\mathbb R^n$. We impose some constraints on the similarity coefficients of mappings of the system $\mathcal F_t$ and require that the similarity dimension of the system does not exceed some number $s$. For such systems it is proved that the Hausdorff dimension of the set of parameters $t$ for which the intersection $F_i(K_t)\cap F_j^t(K_t)$ is nonempty does not exceed $2s$. The obtained results are applied to the problem of checking the strong separation condition for a system $\mathcal F_\tau=\{F_1^\tau,\dots, F_m^\tau\}$ of contraction similarities depending on a parameter vector $\tau=(t_1,\dots,t_m)$. Two cases are considered: $\tau$ is a vector of translations of mappings $F_i^\tau(x)=G_i(x)+t_i$, $t_i\in \mathbb R^n$, and $\tau$ is a vector of similarity coefficients of mappings $F_i^\tau(x)=t_i G_i(x)+h_i$, $t_i\in(a,b)$, where $0$ and all $G_i$ are isometries in $\mathbb R^n$. In both cases we find sufficient conditions for the system $\mathcal F_\tau$ to satisfy the strong separation condition for almost all values of $\tau$. We also consider the easier problem of the intersection $A\cap f_t(B)$ for a pair of compact sets $A$ and $B$ in the space $\mathbb R^n$. Two cases are considered: $f_t(B)=B+t$ for $t\in\mathbb R^n$, and $f_t(B)=tB$ for $t\in\mathbb R$, where the closure of $B$ does not contain the origin. In both cases it is proved that the Hausdorff dimension of the set of parameters $t$ for which the intersection $A\cap f_t(B)$ is nonempty does not exceed $\dim_H (A\times B)$. Consequently, when the dimension of the product $A\times B$ is small enough, the empty intersection $A\cap f_t(B)$ is guaranteed for almost all values of $t$ in both cases.
Keywords: self-similar fractal, general position, strong separation condition
Mots-clés : Hausdorff dimension.
@article{TIMM_2019_25_2_a10,
     author = {K. G. Kamalutdinov},
     title = {Self-intersections in parametrized self-similar sets under translations and extensions of copies},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {116--124},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/}
}
TY  - JOUR
AU  - K. G. Kamalutdinov
TI  - Self-intersections in parametrized self-similar sets under translations and extensions of copies
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 116
EP  - 124
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/
LA  - ru
ID  - TIMM_2019_25_2_a10
ER  - 
%0 Journal Article
%A K. G. Kamalutdinov
%T Self-intersections in parametrized self-similar sets under translations and extensions of copies
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 116-124
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/
%G ru
%F TIMM_2019_25_2_a10
K. G. Kamalutdinov. Self-intersections in parametrized self-similar sets under translations and extensions of copies. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 116-124. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a10/