Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 279-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a regularization of the classical Lagrange principle and Pontryagin maximum principle in convex programming, optimal control, and inverse problems. We discuss two basic questions, why a regularization of the classical optimality conditions (COCs) is necessary and what it gives, using the example of the “simplest” problems of constrained infinite-dimensional convex optimization. The so-called regularized COCs considered in the paper are expressed in terms of the regular classical Lagrange and Hamilton-Pontryagin functions and are sequential generalizations of their classical analogs. They (1) “overcome” the possible instability and infeasibility of the COCs, being regularizing algorithms for the solution of optimization problems, (2) are formulated as statements on the existence of bounded minimizing approximate solutions in the sense of Warga in the original problem and preserve the general structure of the COCs, and (3) lead to the COCs “in the limit.” All optimization problems in the paper depend on an additive parameter in the infinite-dimensional equality constraint (the perturbation method). As a result, it is possible to study the connection of regularized COCs with the subdifferential properties of the value functions of the optimization problems.
Keywords: optimal control, inverse problem, convex programming, Lagrange principle, Pontryagin maximum principle, dual regularization.
Mots-clés : perturbation method
@article{TIMM_2019_25_1_a20,
     author = {M. I. Sumin},
     title = {Regularized {Lagrange} principle and {Pontryagin} maximum principle in optimal control and in inverse problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {279--296},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 279
EP  - 296
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/
LA  - ru
ID  - TIMM_2019_25_1_a20
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 279-296
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/
%G ru
%F TIMM_2019_25_1_a20
M. I. Sumin. Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 279-296. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/

[1] Sumin M.I., “Regulyarizovannaya parametricheskaya teorema Kuna-Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl

[2] Sumin M.I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 54:1 (2014), 25–49 | DOI | Zbl

[3] Vasilev F.P., Metody optimizatsii, v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.

[4] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, Moskva, 1979, 432 pp. | MR

[5] Sumin M.I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 44:11 (2004), 2001–2019 | MR | Zbl

[6] Sumin M.I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl

[7] Sumin M.I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2083–2102 | MR

[8] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, Moskva, 1977, 624 pp.

[9] Sumin M.I., “Regularization of Pontryagin maximum principle in optimal control of distributed systems”, Ural Math. J., 2:2 (2016), 72–86 | DOI | MR | Zbl

[10] Sumin M.I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and inverse problems”, IFAC PapersOnLine, 51:32 (2018), 871–876 | DOI

[11] Sumin M.I., “Zachem nuzhna regulyarizatsiya printsipa Lagranzha i printsipa maksimuma Pontryagina i chto ona daet”, Vestn. Tambov. un-ta. Ser. Estestvennye i tekhnicheskie nauki, 23:124 (2018), 757–775 | DOI

[12] Sumin M.I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorod. gos. un-ta, Nizhnii Novgorod, 2009, 289 pp.

[13] Sumin M.I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zhurn. vychisl. matematiki i mat. fiziki, 37:1 (1997), 23–41 | MR | Zbl

[14] Smirnov V.I., Kurs vysshei matematiki, v. 5, Gos. izd-vo fiz.-mat. lit., Moskva, 1959, 656 pp. | MR

[15] Loewen P.D., Optimal control via nonsmooth analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993, 158 pp. | DOI | MR | Zbl

[16] Krein S.G., Lineinye uravneniya v banakhovom prostranstve, Nauka, Moskva, 1971, 104 pp.

[17] Trenogin V.A., Funktsionalnyi analiz, Nauka, Moskva, 1980, 496 pp.

[18] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, Moskva, 1967, 736 pp. | MR

[19] Plotnikov V.I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 32:4 (1968), 743–755 | Zbl

[20] Plotnikov V.I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | Zbl

[21] Kuterin F.A., Sumin M.I., “O regulyarizovannom printsipe Lagranzha v iteratsionnoi forme i ego primenenii dlya resheniya neustoichivykh zadach”, Mat. modelirovanie, 28:11 (2016), 3–18 | Zbl

[22] Kuterin F.A., Sumin M.I., “Ustoichivyi iteratsionnyi printsip Lagranzha v vypuklom programmirovanii kak instrument dlya resheniya neustoichivykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 57:1 (2017), 55–68 | DOI | MR | Zbl

[23] Kalinin A.V., Sumin M.I., Tyukhtina A.A., “Ob obratnykh zadachakh finalnogo nablyudeniya dlya sistemy uravnenii Maksvella v kvazistatsionarnom magnitnom priblizhenii i ustoichivykh sekventsialnykh printsipakh Lagranzha dlya ikh resheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 57:2 (2017), 187–209 | DOI | Zbl

[24] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, Moskva, 1988, 264 pp.

[25] Kuterin F.A., Sumin M.I., “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii I: optimizatsiya sosredotochennoi sistemy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:4 (2016), 474–489 | DOI | MR | Zbl

[26] Kuterin F.A., Sumin M.I., “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii II: optimizatsiya raspredelennoi sistemy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 27:1 (2017), 26–41 | DOI | MR | Zbl

[27] Sumin M.I., “Printsip maksimuma v teorii suboptimalnogo upravleniya raspredelennymi sistemami s operatornymi ogranicheniyami v gilbertovom prostranstve”, Itogi nauki i tekhniki. Ser. Sovrem. matematika i ee prilozheniya. Temat. obzor, 66, VINITI, 1999, 193–235