Mots-clés : perturbation method
@article{TIMM_2019_25_1_a20,
author = {M. I. Sumin},
title = {Regularized {Lagrange} principle and {Pontryagin} maximum principle in optimal control and in inverse problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {279--296},
year = {2019},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/}
}
TY - JOUR AU - M. I. Sumin TI - Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 279 EP - 296 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/ LA - ru ID - TIMM_2019_25_1_a20 ER -
M. I. Sumin. Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 279-296. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/
[1] Sumin M.I., “Regulyarizovannaya parametricheskaya teorema Kuna-Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl
[2] Sumin M.I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 54:1 (2014), 25–49 | DOI | Zbl
[3] Vasilev F.P., Metody optimizatsii, v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.
[4] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, Moskva, 1979, 432 pp. | MR
[5] Sumin M.I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 44:11 (2004), 2001–2019 | MR | Zbl
[6] Sumin M.I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl
[7] Sumin M.I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2083–2102 | MR
[8] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, Moskva, 1977, 624 pp.
[9] Sumin M.I., “Regularization of Pontryagin maximum principle in optimal control of distributed systems”, Ural Math. J., 2:2 (2016), 72–86 | DOI | MR | Zbl
[10] Sumin M.I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and inverse problems”, IFAC PapersOnLine, 51:32 (2018), 871–876 | DOI
[11] Sumin M.I., “Zachem nuzhna regulyarizatsiya printsipa Lagranzha i printsipa maksimuma Pontryagina i chto ona daet”, Vestn. Tambov. un-ta. Ser. Estestvennye i tekhnicheskie nauki, 23:124 (2018), 757–775 | DOI
[12] Sumin M.I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorod. gos. un-ta, Nizhnii Novgorod, 2009, 289 pp.
[13] Sumin M.I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zhurn. vychisl. matematiki i mat. fiziki, 37:1 (1997), 23–41 | MR | Zbl
[14] Smirnov V.I., Kurs vysshei matematiki, v. 5, Gos. izd-vo fiz.-mat. lit., Moskva, 1959, 656 pp. | MR
[15] Loewen P.D., Optimal control via nonsmooth analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993, 158 pp. | DOI | MR | Zbl
[16] Krein S.G., Lineinye uravneniya v banakhovom prostranstve, Nauka, Moskva, 1971, 104 pp.
[17] Trenogin V.A., Funktsionalnyi analiz, Nauka, Moskva, 1980, 496 pp.
[18] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, Moskva, 1967, 736 pp. | MR
[19] Plotnikov V.I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 32:4 (1968), 743–755 | Zbl
[20] Plotnikov V.I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | Zbl
[21] Kuterin F.A., Sumin M.I., “O regulyarizovannom printsipe Lagranzha v iteratsionnoi forme i ego primenenii dlya resheniya neustoichivykh zadach”, Mat. modelirovanie, 28:11 (2016), 3–18 | Zbl
[22] Kuterin F.A., Sumin M.I., “Ustoichivyi iteratsionnyi printsip Lagranzha v vypuklom programmirovanii kak instrument dlya resheniya neustoichivykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 57:1 (2017), 55–68 | DOI | MR | Zbl
[23] Kalinin A.V., Sumin M.I., Tyukhtina A.A., “Ob obratnykh zadachakh finalnogo nablyudeniya dlya sistemy uravnenii Maksvella v kvazistatsionarnom magnitnom priblizhenii i ustoichivykh sekventsialnykh printsipakh Lagranzha dlya ikh resheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 57:2 (2017), 187–209 | DOI | Zbl
[24] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, Moskva, 1988, 264 pp.
[25] Kuterin F.A., Sumin M.I., “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii I: optimizatsiya sosredotochennoi sistemy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:4 (2016), 474–489 | DOI | MR | Zbl
[26] Kuterin F.A., Sumin M.I., “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii II: optimizatsiya raspredelennoi sistemy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 27:1 (2017), 26–41 | DOI | MR | Zbl
[27] Sumin M.I., “Printsip maksimuma v teorii suboptimalnogo upravleniya raspredelennymi sistemami s operatornymi ogranicheniyami v gilbertovom prostranstve”, Itogi nauki i tekhniki. Ser. Sovrem. matematika i ee prilozheniya. Temat. obzor, 66, VINITI, 1999, 193–235