Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 279-296
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a regularization of the classical Lagrange principle and Pontryagin maximum principle in convex programming, optimal control, and inverse problems. We discuss two basic questions, why a regularization of the classical optimality conditions (COCs) is necessary and what it gives, using the example of the “simplest” problems of constrained infinite-dimensional convex optimization. The so-called regularized COCs considered in the paper are expressed in terms of the regular classical Lagrange and Hamilton-Pontryagin functions and are sequential generalizations of their classical analogs. They (1) “overcome” the possible instability and infeasibility of the COCs, being regularizing algorithms for the solution of optimization problems, (2) are formulated as statements on the existence of bounded minimizing approximate solutions in the sense of Warga in the original problem and preserve the general structure of the COCs, and (3) lead to the COCs “in the limit.” All optimization problems in the paper depend on an additive parameter in the infinite-dimensional equality constraint (the perturbation method). As a result, it is possible to study the connection of regularized COCs with the subdifferential properties of the value functions of the optimization problems.
Keywords:
optimal control, inverse problem, convex programming, Lagrange principle, Pontryagin maximum principle, dual regularization.
Mots-clés : perturbation method
Mots-clés : perturbation method
@article{TIMM_2019_25_1_a20,
author = {M. I. Sumin},
title = {Regularized {Lagrange} principle and {Pontryagin} maximum principle in optimal control and in inverse problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {279--296},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/}
}
TY - JOUR AU - M. I. Sumin TI - Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 279 EP - 296 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/ LA - ru ID - TIMM_2019_25_1_a20 ER -
%0 Journal Article %A M. I. Sumin %T Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems %J Trudy Instituta matematiki i mehaniki %D 2019 %P 279-296 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/ %G ru %F TIMM_2019_25_1_a20
M. I. Sumin. Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 279-296. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a20/