Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 92-103
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate a weighted version of the Nikolskii-Bernstein inequality $$ \|\Lambda_{\alpha}^{k}f\|_{q,\alpha}\le \mathcal{L}(\alpha,p,q,k)\sigma^{(2\alpha+2)(1/p-1/q)+k}\|f\|_{p,\alpha},\quad \alpha\ge -1/2, $$ on the subspace $\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ of entire functions of exponential type. Here $\Lambda_{\alpha}$ is the Dunkl differential-difference operator whose second power generates the Bessel differential operator $B_{\alpha}=\displaystyle\frac{d^{2}}{dx^{2}}+\displaystyle\frac{2\alpha+1}{x}\,\displaystyle\frac{d}{dx}$. For $(p,q)=(1,\infty)$, we compute the following sharp constants for nonnegative functions: $$ \mathcal{L}_{0}^{*}(\alpha)_{+}=\frac{1}{2^{2\alpha+2}},\quad \mathcal{L}_{1}^{*}(\alpha)_{+}=\frac{1}{2^{2\alpha+4}(\alpha+2)}, $$ where $\mathcal{L}_{r}^{*}(\alpha)_{+}= (\alpha+1)c_{\alpha}^{-2}\mathcal{L}(\alpha,1,\infty,2r)_{+}$ denotes the normalized Nikolskii-Bernstein constant. There are unique (up to a constant factor) extremizers $j_{\alpha+1}^{2}(x/2)$ and $x^{2}j_{\alpha+2}^{2}(x/2)$, respectively. These results are proved with the use of the Markov quadrature formula with nodes at zeros of the Bessel function and the following generalization of Arestov, Babenko, Deikalova, and Horváth's recent result: $$ \mathcal{L}(\alpha,p,\infty,2r)=\sup B_{\alpha}^{r}f(0),\quad r\in \mathbb{Z}_{+}, $$ where the supremum is taken over all even real functions on $\mathbb{R}$ belonging to $\mathcal{E}_{p,\alpha}^{1}$. Our approach is based on the one-dimensional Dunkl harmonic analysis. In particular, we use the even positive Dunkl-type generalized translation operator $T_{\alpha}^{t}$, which is bounded on $L^{p}(\mathbb{R},|t|^{2\alpha+1}\,dt)$ with constant 1, is invariant on the subspace $\mathcal{E}_{p,\alpha}^{\sigma}$, and commutes with $B_{\alpha}$.
Keywords: weighted Nikolskii-Bernstein inequality, entire function of exponential type, Dunkl transform, generalized translation operator, Bessel function.
Mots-clés : sharp constant
@article{TIMM_2018_24_4_a6,
     author = {D. V. Gorbachev},
     title = {Nikolskii - {Bernstein} constants for nonnegative entire functions of exponential type on the axis},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {92--103},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 92
EP  - 103
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a6/
LA  - ru
ID  - TIMM_2018_24_4_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 92-103
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a6/
%G ru
%F TIMM_2018_24_4_a6
D. V. Gorbachev. Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 92-103. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a6/

[1] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 408 pp.

[2] Andersen N.B., de Jeu M., “Elementary proofs of Paley-Wiener theorems for the Dunkl transform on the real line”, Int. Math. Res. Notices, 2005:30 (2005), 1817–1831 | DOI | MR | Zbl

[3] Arestov V.V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl

[4] Arestov V., Babenko A., Deikalova M., Horváth Á., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[5] Bateman G., Erdélyi A., et al., Higher transcendental functions, v. II, McGraw Hill Book Company, N Y, 1953, 396 pp. | MR

[6] Dai F., Gorbachev D., Tikhonov S., Nikolskii constants for polynomials on the unit sphere, [e-resource], 21 pp., arXiv: 1708.09837

[7] Frappier C., Olivier P., “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60 (1993), 303–316 | DOI | MR | Zbl

[8] Ghanem R.B., Frappier C., “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR | Zbl

[9] Gorbachev D.V., “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Mat. zametki, 68:2 (2000), 179–187 | DOI | Zbl

[10] Gorbachev D.V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Mat. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl

[11] Gorbachev D.V., “Integralnaya zadacha Konyagina i $(C,L)$-konstanty Nikolskogo”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:2 (2005), 72–91 | MR | Zbl

[12] Gorbachev D.V., Dobrovolskii N.N., “Konstanty Nikolskogo v prostranstvakh $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$”, Chebyshevskii sb., 2018, no. 2, 20–32

[13] Gorbachev D.V., Ivanov V.I., “Kvadraturnye formuly Gaussa i Markova po nulyam sobstvennykh funktsii zadachi Shturma–Liuvillya, tochnye dlya tselykh funktsii eksponentsialnogo tipa”, Mat. sb., 206:8 (2015), 63–98 | DOI | Zbl

[14] Gorbachev D.V., Ivanov V.I., “Priblizhenie v $L_2$ chastichnymi integralami preobrazovaniya Fure po sobstvennym funktsiyam operatora Shturma–Liuvillya”, Mat. zametki, 100:4 (2016), 519–530 | DOI | Zbl

[15] Gorbachev D.V., Ivanov V.I., Tikhonov S.Y., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018, 1–51 | DOI

[16] Grozev G.R., Rahman Q.I., “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64 (1995), 715–725 | DOI | MR | Zbl

[17] Levin B.Ya., Tselye funktsii, Izd-vo MGU, Moskva, 1971, 124 pp.

[18] Rahman Q.I., Schmeisser G., “$L^p$ inequalities for entire functions of exponential type”, Trans. Amer. Math. Soc., 320:1 (1990), 91–103 | DOI | MR | Zbl

[19] “Rösler M. Dunkl operators: Theory and applications”, Lecture Notes in Math., 1817, eds. eds. E. Koelink, W. Van Assche, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl

[20] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, Moskva, 1977, 480 pp.

[21] Platonov S.S., “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matematicheskaya, 71:5 (2007), 149–196 | DOI | MR | Zbl

[22] Révész Sz.Gy., “Turán's extremal problem on locally compact abelian groups”, Anal. Math., 37:1 (2011), 15–50 | DOI | MR | Zbl

[23] Soltani F., “$L^p$-Fourier multipliers for the Dunkl operator on the real line”, J. Funct. Anal., 209:1 (2004), 16–35 | DOI | MR | Zbl

[24] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit., M., 1960, 624 pp.