Example of parabolic spline interpolation with bounded Lebesgue constant
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 85-91
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an example of a sequence of geometric data grids for which the Lebesgue constant of interpolation by the classical parabolic splines (Subbotin's scheme) with periodic boundary conditions is unbounded; i.e., the interpolation process may diverge. We propose an alternative scheme for choosing the knots of a parabolic spline. In Subbotin's scheme, knots of a spline are chosen as the midpoints of intervals of the data grid, whereas the location of a knot in the alternative scheme is defined proportionally to the lengths of the adjacent intervals (we consider two variants). In the case of interpolation by the alternative scheme in the example under consideration, the process converges for any continuous function; i.e., the Lebesgue constant is bounded. The sequence of grids studied in the paper is the “worst” from the viewpoint of the convergence of the interpolation process in the classical case.
Keywords: parabolic splines
Mots-clés : interpolation, convergence, Lebesgue constant.
@article{TIMM_2018_24_4_a5,
     author = {Yu. S. Volkov},
     title = {Example of parabolic spline interpolation with bounded {Lebesgue} constant},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {85--91},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a5/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Example of parabolic spline interpolation with bounded Lebesgue constant
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 85
EP  - 91
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a5/
LA  - ru
ID  - TIMM_2018_24_4_a5
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Example of parabolic spline interpolation with bounded Lebesgue constant
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 85-91
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a5/
%G ru
%F TIMM_2018_24_4_a5
Yu. S. Volkov. Example of parabolic spline interpolation with bounded Lebesgue constant. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 85-91. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a5/

[1] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR

[2] Volkov Yu.S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vychisl. sistemy, 106, IM SO AN SSSR, Novosibirsk, 1984, 41–56

[3] Zmatrakov N.L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Tr. MIAN, 138, 1975, 71–93 | MR | Zbl

[4] Volkov Yu.S., “The general problem of polynomial spline interpolation”, Proc. Steklov Inst. Math., 300, Suppl. 1, 2018, S187–S198 | DOI | MR | Zbl

[5] Schoenberg I. J., Whitney A., “On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves”, Trans. Amer. Math. Soc., 74:2 (1953), 246–259 | DOI | MR | Zbl

[6] Richards F. B., “Best bounds for the uniform periodic spline interpolation operator”, J. Approxim. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl

[7] Volkov Yu. S., “Novyi sposob postroeniya interpolyatsionykh kubicheskikh splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 231–241 | MR | Zbl

[8] Volkov Yu. S., “Obratnye tsiklicheskikh lentochnykh matrits i skhodimost protsessov interpolyatsii dlya proizvodnykh periodicheskikh interpolyatsionnykh splainov”, Sib. zhurn. vychisl. matematiki, 13:3 (2010), 243–253 | Zbl

[9] Volkov Yu. S., Miroshnichenko V. L., “Otsenki norm matrits, obratnykh k matritsam monotonnogo vida i vpolne neotritsatelnym matritsam”, Sib. mat. zhurn., 50:6 (2009), 1248–1254 | MR | Zbl