On Kolmogorov type inequalities in the Bergman space for functions of two variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 270-282
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $\mathrm{z}:=(\xi,\zeta)=(re^{it},\rho e^{i\tau})$, where $0\leq r,\rho\infty$ and $0\leq t,\tau\leq 2\pi$, is a point in the two-dimensional complex space $\mathbb{C}^{2}$; $U^{2}:=\{\mathrm{z}\in\mathbb{C}^{2}: |\xi|1,\,|\zeta|1\}$ is the unit bidisk in $\mathbb{C}^{2}$; $\mathcal{A}(U^{2})$ is the class of functions analytic in $U^{2}$; and $B_{2}:=B_{2}(U^{2})$ is the Bergman space of functions $f\in\mathcal{A}(U^{2})$ such that $$ \|f\|_{2}:=\|f\|_{B_{2}(U^{2})}=\left(\frac{1}{4\pi^{2}}\iint_{(U^{2})}|f(\xi,\zeta)|^{2}d\sigma_{\xi}d\sigma_{\zeta}\right)^{1/2}+\infty, $$ where $d\sigma_{\xi}:=dxdy$, $d\sigma_{\zeta}:=dudv$, and the integral is understood in the Lebesgue sense. S.B. Vakarchuk and M.B. Vakarchuk (2013) proved that, under some conditions on the Taylor coefficients $c_{pq}(f)$ in the expansion of $f(\xi,\zeta)$ in a double Taylor series, the following exact Kolmogorov inequality holds: $$ \left\|f^{(k-\mu,l-\nu)}\right\|_{2}\leq \mathcal{C}_{k,l}(\mu,\nu) \,\|f\|_{2}^{\mu\nu/(kl)}\,\left\|f^{(k,0)}\right\|_{2}^{(1-\mu/k)\nu/l}\,\left\|f^{(0,l)}\right\|_{2}^{(1-\nu/l)\mu/k}\,\left\|f^{(k,l)}\right\|_{2}^{(1-\mu/k)(1-\nu/l)}, $$ where the numerical coefficients $\mathcal{C}_{k,l}(\mu,\nu)$ are explicitly defined by the parameters $k,l\in\mathbb{N}$ and $\mu,\nu\in\mathbb{Z}_{+}$. We find an exact Kolmogorov type inequality for the best approximations $\mathscr{E}_{m-1,n-1}(f)_{2}$ of functions $f\in B_{2}(U^{2})$ by generalized polynomials (quasipolynomials): $$ \mathscr{E}_{m-k+\mu-1,n-l+\nu-1}\big(f^{(k-\mu,l-\nu)}\big)_{2} $$ $$ {}\leq\frac{\alpha_{m,k-\mu}\alpha_{n,l-\nu}(m-k+1)^{(k-\mu)/(2k)}(n-l+1)^{(l-\nu)/(2l)}(m+1)^{\mu/(2k)}(n+1)^{\nu/(2l)}}{(\alpha_{m,k})^{1-\mu/m}(\alpha_{n,l})^{1-\nu/l}\left[(m-k+\mu+1)(n-l+\nu+1)\right]^{1/2}} $$ $$ {}\times\big(\mathscr{E}_{m-1,n-1}(f)_{2}\big)^{\frac{\mu\nu}{kl}}\big(\mathscr{E}_{m-k-1,n-l}\big(f^{(k,0)}\big)_{2}\big)^{(1-\frac{\mu}{k})\frac{\nu}{l}} $$ $$ {}\times\big(\mathscr{E}_{m-1,n-l-1}\big(f^{(0,l)}\big)_{2}\big)^{\frac{\mu}{k}(1-\frac{\nu}{l})}\big(\mathscr{E}_{m-k-1,n-l-1}\big(f^{(k,l)}\big)_{2}\big)^{(1-\frac{\mu}{k})(1-\frac{\nu}{l})} $$ in the sense that there exists a function $f_{0}\in B_{2}^{(k,l)}$ for which the inequality turns into an equality.
Keywords: Kolmogorov type inequality, Bergman space, analytic function, upper bound.
Mots-clés : quasipolynom
@article{TIMM_2018_24_4_a21,
     author = {M. Sh. Shabozov and V. D. Sainakov},
     title = {On {Kolmogorov} type inequalities in the {Bergman} space for functions of two variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {270--282},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a21/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - V. D. Sainakov
TI  - On Kolmogorov type inequalities in the Bergman space for functions of two variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 270
EP  - 282
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a21/
LA  - ru
ID  - TIMM_2018_24_4_a21
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A V. D. Sainakov
%T On Kolmogorov type inequalities in the Bergman space for functions of two variables
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 270-282
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a21/
%G ru
%F TIMM_2018_24_4_a21
M. Sh. Shabozov; V. D. Sainakov. On Kolmogorov type inequalities in the Bergman space for functions of two variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 270-282. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a21/

[1] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003, 590 pp.

[2] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | DOI | MR | Zbl

[3] Vakarchuk S.B., “O neravenstvakh tipa Kolmogorova dlya nekotorykh banakhovykh prostranstv analiticheskikh funktsii. Nekotorye voprosy analiza i differentsialnoi topologii”, Cb. nauch. rabot In-ta matematiki AN USSR, Kiev, 1988, 4–7 | Zbl

[4] Shabozov M.Sh., Saidusainov M.S., “Neravenstvo tipa Kolmogorova v vesovom prostranstve Bergmana”, Dokl. AN RT, 50:1 (2007), 14–19

[5] Vakarchuk S.B., Vakarchuk M.B., “O neravenstvakh tipa Kolmogorova dlya analiticheskikh v kruge funktsii”, Visnik Dnipropetrovskogo universitetu. Ser.: Matematika, 17:6/1 (2012), 82–88

[6] Saidusainov M.S., “Tochnye neravenstva tipa Kolmogorova dlya funktsii, prinadlezhaschikh vesovomu prostranstvu Bergmana”, Tr. Mezhdunar. letnei mat. shk.-konf. S. B. Stechkina po teorii funktsii, Dushanbe, 2016, 217–223

[7] Vakarchuk S.B., Vakarchuk M.B., “Neravenstvo tipa Kolmogorova dlya analiticheskikh funktsii odnoi i dvukh kompleksnykh peremennykh i ikh prilozhenie k teorii approksimatsii”, Ukr. mat. zhurn., 63:12 (2011), 1579–1601

[8] Vakarchuk S.B., Vakarchuk M.B., “O neravenstvakh tipa Kolmogorova dlya analiticheskikh v edinichnom bikruge funktsii”, Visnik Dnipropetrovskogo universitetu. Seriya: Matematika, 18:6/1 (2013), 61–66

[9] Brudnyi Yu.A., “Priblizhenie funktsii n peremennykh kvazimnogochlenami”, Izv. AN SSSR. Seriya: Matematika, 34:3 (1970), 564–583

[10] Potapov M.K., “O priblizhenii “uglom””, Proc. Conf. on Constructive Theory of Functions, Budapesht, 1972, 193–206

[11] Shabozov M.Sh., Vakarchuk S.B., “O tochnykh znacheniyakh kvazipoperechnikov nekotorykh funktsionalnykh klassov”, Ukr. mat. zhurn., 48:3 (1996), 301–308 | MR

[12] Shabozov M.Sh., Akobirshoev M.O., “Kvazipoperechniki nekotorykh klassov differentsiruemykh periodicheskikh funktsii dvukh peremennykh”, Dokl. RAN, 404:4 (2005), 460–464 | MR | Zbl

[13] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 440 pp.

[14] Khardi G.G., Littlvud Dzh.E i Polia G., Neravenstva, IL, M., 1948, 456 pp.

[15] Shabozov M.Sh., Saidusainov M.S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya n-poperechnikov”, Mat. zametki, 103:4 (2018), 617–631 | DOI | Zbl