Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space $L_2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 34-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a solution of the problem on the best uniform approximation on the number axis of the first-order differentiation operator on the class of functions with bounded second derivative by linear operators bounded in the space $L_2$. This is one of the few cases of the exact solution of the problem on the approximation of the differentiation operator in some space with the use of approximating operators that are bounded in another space. We obtain a related exact inequality between the uniform norm of the derivative of a function, the variation of the Fourier transform of the function, and the $L_\infty$-norm of its second derivative. This inequality can be regarded as a nonclassical variant of the Hadamard–Kolmogorov inequality.
Keywords: Stechkin problem, differentiation operator, Hadamard–Kolmogorov inequality.
@article{TIMM_2018_24_4_a2,
     author = {V. V. Arestov},
     title = {Best {Uniform} {Approximation} of the {Differentiation} {Operator} by {Operators} {Bounded} in the {Space~}$L_2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {34--56},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a2/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space $L_2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 34
EP  - 56
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a2/
LA  - ru
ID  - TIMM_2018_24_4_a2
ER  - 
%0 Journal Article
%A V. V. Arestov
%T Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space $L_2$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 34-56
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a2/
%G ru
%F TIMM_2018_24_4_a2
V. V. Arestov. Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space $L_2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 34-56. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a2/

[1] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[2] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | DOI | MR | Zbl

[3] Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003, 591 pp.

[4] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp.

[5] Gabushin V.N., “Nailuchshee priblizhenie funktsionalov na nekotorykh mnozhestvakh”, Mat. zametki, 8:5 (1970), 551–562 | MR

[6] Babenko Yu., Skorokhodov D., “Stechkin's Problem for differential operators and functionals of first and second orders”, J. Approx. Theory, 167 (2013), 173–200 | DOI | MR | Zbl

[7] Babenko V.F., Parfinovich N.V., Pichugov S.A., “Neravenstva tipa Kolmogorova dlya norm proizvodnykh Rissa funktsii mnogikh peremennykh s ogranichennym v $L_\infty$ laplasianom i smezhnye zadachi”, Mat. zametki, 95:1 (2014), 3–17 | DOI | MR | Zbl

[8] Berdysheva E., Filatova M., “On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space”, Ural Math. J., 3:2 (2017), 40–45 | DOI | MR

[9] Akopyan R.R., “Approximation of the differentiation operator on the class of functions analytic in an annulus”, Ural Math. J., 3:2 (2017), 6–13 | DOI | MR

[10] Akopyan R.R., “Optimal recovery of a derivative of an analytic function from values of the function given with an error on a part of the boundary”, Analysis Math., 44:1 (2018), 3–19 | DOI | MR | Zbl

[11] Arestov V.V., “On the best approximation of the differentiation operator”, Ural Math. J., 1:1 (2015), 20–29 | DOI | MR | Zbl

[12] Arestov V.V., Filatova M.A., “Best approximation of the differentiation operator in the space $L_2$ on the semiaxis”, J. Approx. Theory, 187 (2014), 65–81 | DOI | MR | Zbl

[13] Buslaev A.P., Magaril-Ilyaev G.G., Tikhomirov V.M., “O suschestvovanii ekstremalnoi funktsii v neravenstve dlya proizvodnykh”, Mat. zametki, 32:6 (1982), 823–834 | MR | Zbl

[14] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.

[15] Landau E., “Einige Ungleichungen f$\ddot{\mathrm{u}}$r zweimal differentierbare Funktionen”, Proc. London Math. Soc. (2), 13 (1913), 43–49 | DOI | MR | Zbl

[16] Kolmogorov A.N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbrannye tr. Matematika, mekhanika, Nauka, M., 1985, 252–263; Уч. зап. Моск. ун-та, Математика, кн. 3, 30, 1939, 3–16

[17] Hadamard J., “Sur le module maximum d'une fonction et de ses dérivés”, Soc. Math. France, Comptes rendus des Séances, 41 (1914), 68–72

[18] Bosse Yu.G. (Shilov G.E.), “O neravenstvakh mezhdu proizvodnymi”, Sb. rabot stud. nauchn. kruzhkov MGU, 1 (1937), 68–72

[19] Gabushin V.N., “O nailuchshem priblizhenii operatora differentsirovaniya v metrike $L_p$”, Mat. zametki, 12:5 (1972), 531–538 | MR

[20] Tikhomirov V.M., Magaril-Ilyaev G.G., “Neravenstva dlya proizvodnykh”: A.N. Kolmogorov, Izbrannye tr. Matematika i mekhanika, Nauka, M., 1985, 387–390

[21] Arestov V.V., “Priblizhenie operatorov, invariantnykh otnositelno sdviga”, Tr. MIAN, 138, 1975, 43–70 | Zbl

[22] Arestov V. V., “Priblizhenie operatorov tipa sverki lineinymi ogranichennymi operatorami”, Tr. MIAN, 145, 1980, 3–19 | Zbl

[23] Arestov V.V., “Priblizhenie invariantnykh operatorov”, Mat. zametki, 34:1 (1983), 9–29 | MR

[24] Arestov V.V., “O nailuchshem priblizhenii operatora differentsirovaniya”, Priblizhenie funktsii polinomami i splainami, cb. st., Sverdlovsk, 1985, 3–14 | Zbl

[25] Arestov V.V., “Nailuchshee priblizhenie neogranichennykh operatorov, invariantnykh otnositelno sdviga, lineinymi ogranichennymi operatorami”, Tr. MIAN, 198, 1992, 3–20 | Zbl

[26] Khermander L., Otsenki dlya operatorov, invariantnykh otnositelno sdviga, Izd-vo inostr. lit., M., 1962, 71 pp.

[27] Larsen R., An introduction to the theory of multipliers, Springer, Berlin etc., 1971, 282 pp. | MR | Zbl

[28] Stechkin S.B., “Neravenstva mezhdu normami proizvodnykh proizvolnoi funktsii”, (in Russian), Acta Sci. Math., 26:3–4 (1965), 225–230 | Zbl

[29] Arestov V.V., “O nailuchshem priblizhenii operatorov differentsirovaniya”, Mat. zametki, 1:2 (1967), 149–154 | Zbl

[30] Buslaev A.P., “O priblizhenii operatora differentsirovaniya”, Mat. zametki, 29:5 (1981), 731–742 | MR

[31] Domar Y., “An extremal problem related to Kolmogoroff's inequality for bounded functions”, Arkiv för Mat., 7:5 (1968), 433–441 | DOI | MR | Zbl

[32] Subbotin Yu.N., Taikov L.V., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Mat. zametki, 3:2 (1968), 157–164 | MR | Zbl

[33] Khardi G.G., Littlvud Dzh.E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.

[34] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963, 1100 pp. | MR

[35] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978, 432 pp.

[36] Markushevich A.I., Teoriya analiticheskikh funktsii, v. 1, Nauka, M., 1967, 488 pp. | MR

[37] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Izd-vo Lan, SPb., 1997, 800 pp.

[38] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004, 896 pp.