Voir la notice du chapitre de livre
@article{TIMM_2018_24_4_a18,
author = {Yu. N. Subbotin and N. I. Chernykh},
title = {Harmonic {Interpolating} {Wavelets} in a {Ring}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {225--234},
year = {2018},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a18/}
}
Yu. N. Subbotin; N. I. Chernykh. Harmonic Interpolating Wavelets in a Ring. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 225-234. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a18/
[1] Subbotin Yu.N., Chernykh N.I., “Interpolation wavelets in boundary value problems”, Proc. Steklov Inst. Math., 300, Suppl. 1, 2018, 172–183 | DOI | MR
[2] Donoho D.L., Interpolating wavelet transforms, Stanford University, Stanford, 1992, 54 pp.
[3] Goluzin G.M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravnenii Laplasa i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–278
[4] Subbotin Yu.N., Chernykh N.I., “Garmonicheskie vspleski i asimptotika resheniya zadachi Dirikhle v kruge s malym otverstiem”, Mat. modelirovanie, 14:5 (2002), 17–30 | MR | Zbl
[5] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR
[6] Akhiezer N.I., Lektsii po teorii approksimatsii, Gostekhizdat, M.; L, 1947, 323 pp. | MR