On a periodic part of a Shunkov group saturated with wreathed groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 281-285
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A group $G$ is saturated with groups from a set of groups $\mathfrak{X}$ if any finite subgroup $K$ of $G$ is contained in a subgroup of $G$ isomorphic to some group from $\mathfrak{X}$. A group $G$ is called a Shunkov group (a conjugately biprimitively finite group) if, for any finite subgroup $H$ of $G$, any two conjugate elements of prime order in the quotient group $N_G(H)/h$ generate a finite group. Let $G$ be a group. If all elements of finite orders from $G$ are contained in a periodic subgroup of $G$, then it is called a periodic part of $G$ and is denoted by $t(G)$. It is known that a Shunkov group may have no periodic part. The existence of a periodic part of a Shunkov group saturated with finite wreathed groups is proved and the structure of the periodic part is established.
Keywords: group saturated with a set of groups, Shunkov group.
@article{TIMM_2018_24_3_a24,
     author = {A. A. Shlepkin},
     title = {On a periodic part of a {Shunkov} group saturated with wreathed groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {281--285},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a24/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On a periodic part of a Shunkov group saturated with wreathed groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 281
EP  - 285
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a24/
LA  - ru
ID  - TIMM_2018_24_3_a24
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On a periodic part of a Shunkov group saturated with wreathed groups
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 281-285
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a24/
%G ru
%F TIMM_2018_24_3_a24
A. A. Shlepkin. On a periodic part of a Shunkov group saturated with wreathed groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 281-285. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a24/

[1] Shlepkin A.K., “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, 3-ya Mezhdunar. konf. po algebre, sb. tez., Krasnoyarsk, 1993, 369

[2] Shunkov V.P., Senashov V.I., Gruppy s usloviyami konechnosti, Nauka. Sibirskaya izdatelskaya firma RAN, Novosibirsk, 2001, 326 pp.

[3] Cherep A.A., “O mnozhestve elementov konechnogo poryadka v biprimitivno konechnoi gruppe”, Algebra i logika, 26:4 (1987), 518–521

[4] Kargapolov P.L., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp.

[5] Shlepkin A.A., “Periodicheskie gruppy, nasyschennye spletennymi gruppami”, Sib. elektron. mat. izv., 2013, no. 10, 56–64

[6] Ditsman A.P., “O tsentre p-grupp”, Tr. seminara po teorii grupp, Moskva, 1938, 30–34

[7] Shlepkin A.A., “Gruppy Shunkova, nasyschennye lineinymi i unitarnymi gruppami stepeni 3 nad polyami nechetnykh poryadkov”, Sib. elektron. mat. izv., 13 (2016), 341–351

[8] Shlepkin A.K., Gruppy Shunkova s dopolnitelnymi ogranicheniyami, dis. ... d-ra fiz.-mat. nauk, Krasnoyarsk, 1999, 187 pp.

[9] Shlepkin A.K., “O sopryazhenno biprimitivno konechnykh gruppakh s usloviem primarnoi minimalnosti”, Algebra i logika, 22 (1983), 226–231

[10] Lytkina D.V., Tukhvatullina L.R., Filippov K.A., “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. mat. zhurn., 49:2 (2008), 395–400