On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 263-271
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problem of classification of AT4$(p,p+2,r)$-graphs. An example of an AT4$(p,p+2,r)$-graph with $p=2$ is provided by the Soicher graph with intersection array $\{56, 45, 16,1;1,8, 45, 56\}$. The question of existence of AT4$(p,p+2,r)$-graphs with $p>2$ is still open. One task in their classification is to describe such graphs of small valency. We investigate the automorphism groups of a hypothetical AT4$(7,9,r)$-graph and of its local graphs. The local graphs of each AT4$(7,9,r)$-graph are strongly regular with parameters $(711,70,5,7)$. It is unknown whether a strongly regular graph with these parameters exists. We show that the automorphism group of each AT4$(7,9,r)$-graph acts intransitively on its arcs. Moreover, we prove that the automorphism group of each strongly regular graph with parameters $(711,70,5,7)$ acts intransitively on its vertices.
Keywords: antipodal tight graph, strongly regular graph
Mots-clés : automorphism.
@article{TIMM_2018_24_3_a22,
     author = {L. Yu. Tsiovkina},
     title = {On automorphism groups of {AT4(7,} 9,r)-graphs and their local subgraphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {263--271},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a22/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 263
EP  - 271
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a22/
LA  - ru
ID  - TIMM_2018_24_3_a22
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 263-271
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a22/
%G ru
%F TIMM_2018_24_3_a22
L. Yu. Tsiovkina. On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 263-271. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a22/

[1] Gavrilyuk A.L., Makhnev A.A., Paduchikh D.V., “O distantsionno regulyarnykh grafakh, v kotorykh okrestnosti vershin silno regulyarny”, Dokl. AN, 452:3 (2013), 247–251

[2] Brouwer A.E., Parameters of strongly regular graphs, [site] URL: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html

[3] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | DOI

[4] Cameron P.J., Permutation Groups, Cambridge Univ. Press, Cambridge, 1999, 220 pp.

[5] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI

[6] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12

[7] R. Guralnick, B. Kunyavskii, E. Plotkin, A. Shalev, “Thompson-like characterizations of the solvable radical”, J. Algebra, 300 (2006), 363–375 | DOI