Codes in distance-regular graphs with $\theta_2~= -1$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 155-163
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

If a distance-regular graph $\Gamma$ of diameter 3 contains a maximal 1-code $C$ that is both locally regular and last subconstituent perfect, then $\Gamma$ has intersection array $\{a(p+1),cp,a+1;1,c,ap\}$ or $\{a(p+1),(a+1)p,c;1,c,ap\}$, where $a=a_3$, $c=c_2$, and $p=p^3_{33}$ (Juri$\check{\mathrm{s}}$i$\acute{\mathrm{c}}$ and Vidali). In first case, $\Gamma$ has eigenvalue $\theta_2=-1$ and the graph $\Gamma_3$ is pseudogeometric for $GQ(p+1,a)$. In the second case, $\Gamma$ is a Shilla graph. We study graphs with intersection array $\{a(p+1),cp,a+1;1,c,ap\}$ in which any two vertices at distance 3 are in a maximal 1-code. In particular, we find four new infinite families of intersection arrays: $\{a(a-2),(a-1)(a-3),a+1;1,a-1,a(a-3)\}$ for $a\ge 5$, $\{a(2a+3),2(a-1)(a+1),a+1;1,a-1,2a(a+1)\}$ for $a$ not congruent to $1$ modulo $3$, $\{a(2a-3),2(a-1)(a-2),a+1;1,a-1,2a(a-2)\}$ for even $a$ not congruent to $1$ modulo $3$, and $\{a(3a-4),(a-1)(3a-5),a+1;1,a-1,a(3a-5)\}$ for even $a$ congruent to 0 or 2 modulo 5.
Keywords: distance-regular graph
Mots-clés : maximal code.
@article{TIMM_2018_24_3_a14,
     author = {M. S. Nirova},
     title = {Codes in distance-regular graphs with $\theta_2~= -1$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {155--163},
     year = {2018},
     volume = {24},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a14/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - Codes in distance-regular graphs with $\theta_2~= -1$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 155
EP  - 163
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a14/
LA  - ru
ID  - TIMM_2018_24_3_a14
ER  - 
%0 Journal Article
%A M. S. Nirova
%T Codes in distance-regular graphs with $\theta_2~= -1$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 155-163
%V 24
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a14/
%G ru
%F TIMM_2018_24_3_a14
M. S. Nirova. Codes in distance-regular graphs with $\theta_2~= -1$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 155-163. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a14/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp.

[2] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI

[3] Makhnev A.A., Nirova M.S., “Distantsionno regulyarnye grafy Shilla s $b_2 = c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI

[4] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI

[5] Koolen J.H., Park J., Yu H., “An enequality involving the second largesr and smallest eigenvalues of a distance-regular graphs”, Linear Algebra and Appl., 434:12 (2011), 2404–2413 | DOI

[6] Makhnev A.A., “Grafy, v kotorykh granitsa Khofmana dlya koklik sovpadaet s granitsei Tsvetkovicha”, Dokl. AN, 438:3 (2011), 303–307

[7] Makhnev A.A. (ml.), Makhnev A.A., “Ovoidy i dvudolnye podgrafy v obobschennykh chetyrekhugolnikakh”, Mat. zametki, 73:6 (2003), 878–885