Voir la notice du chapitre de livre
Mots-clés : maximal code.
@article{TIMM_2018_24_3_a14,
author = {M. S. Nirova},
title = {Codes in distance-regular graphs with $\theta_2~= -1$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {155--163},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a14/}
}
M. S. Nirova. Codes in distance-regular graphs with $\theta_2~= -1$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 155-163. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a14/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp.
[2] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI
[3] Makhnev A.A., Nirova M.S., “Distantsionno regulyarnye grafy Shilla s $b_2 = c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI
[4] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI
[5] Koolen J.H., Park J., Yu H., “An enequality involving the second largesr and smallest eigenvalues of a distance-regular graphs”, Linear Algebra and Appl., 434:12 (2011), 2404–2413 | DOI
[6] Makhnev A.A., “Grafy, v kotorykh granitsa Khofmana dlya koklik sovpadaet s granitsei Tsvetkovicha”, Dokl. AN, 438:3 (2011), 303–307
[7] Makhnev A.A. (ml.), Makhnev A.A., “Ovoidy i dvudolnye podgrafy v obobschennykh chetyrekhugolnikakh”, Mat. zametki, 73:6 (2003), 878–885