Voir la notice du chapitre de livre
@article{TIMM_2018_24_3_a12,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {Inverse problems in distance-regular graphs theory},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {133--144},
year = {2018},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a12/}
}
A. A. Makhnev; D. V. Paduchikh. Inverse problems in distance-regular graphs theory. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 3, pp. 133-144. http://geodesic.mathdoc.fr/item/TIMM_2018_24_3_a12/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp.
[2] Makhnev A., Nirova M., “On distance-regular Shilla graphs with $b_2 = c_2$”, Mat. Zametki, 103:5 (2018), 730–744 | DOI
[3] Coolsaet K., Jurisic A., “Using equality in the Krein conditions to prove the nonexistence of certain distance-regular graphs”, J. Comb. Theory Ser. A, 115 (2008), 1086–1095 | DOI
[4] Shi M., Krotov D., Sole P., A new distance-regular graph of diameter 3 on 1024 vertices, [e-resource], 2018, 12 pp., arXiv: https://arxiv.org/pdf/1806.07069.pdf
[5] Gavrilyuk A., Makhnev A., “Distance-regular graph with intersection array {45,30,7;1,2,27} does not exist”, Discrete Math. Appl., 23 (2013), 225–244
[6] Gavrilyuk A., Makhnev A., “Distance-regular graphs with intersection arrays {52,35,16;1,4,28} and {69,48,24;1,4,46} do not exist”, Des. Codes Cryptogr., 65 (2012), 49–54
[7] Urlep M., “Triple intersection numbers in Q-polinomial distance-regular graphs”, Europ. J. Comb., 33 (2012), 1246–1252
[8] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI
[9] Nirova M., “On distance-regular graphs $\Gamma$ with strongly regular $\Gamma_2$ and $\Gamma_3$”, Sibirean Electr. Math. Reports, 15 (2018), 175–185 | DOI
[10] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI
[11] Koolen J.H., Park J., “A relationship between the diameter and the intersection number $c_2$ for a distance-regular graphs”, Des. Codes Cryptogr, 65:1–2 (2012), 55–63 | DOI
[12] Degraer J., Isomorphism-free exhaustive generation algorithms for association schemes, PHD, Univ. Gent, Gent, 2007, 240 pp.