On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 p \infty$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 93-106
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a method for proving, in particular, the equivalence of M.F. Timan's known estimates for the $r$th-order $L_{p}$-moduli of smoothness $\omega_{r}(f;{\pi/n})_{p}$ and O.V. Besov's estimates for the $L_p$-norms $\|f^{(r)}\|_{p}$ of $r$th-order derivatives by using elements of the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ of the best approximations of a $2\pi$-periodic function $f\in L_{p}(\mathbb T)$ by trigonometric polynomials of order at most $n-1$, $n\in \mathbb N$, where $r\in \mathbb N$, $1 p \infty$, and $\mathbb T=(-\pi,\pi]$. Theorem 1. Let $1 p \infty$, $\theta=\min\{2,p\}$, $r\in \mathbb N$, $f\in L_{p}(\mathbb T)$, and $\sum_{n=1}^{\infty}n^{\theta r-1} E_{n-1}^{\theta}(f)_{p} \infty$. Then the inequality $\omega_{r}(f;\pi/n)_{p}\le C_{1}(r,p)n^{-r}\Big(\sum_{\nu=1}^{n}\nu^{\theta r-1}E_{\nu-1}^{\theta}(f)_{p}\Big)^{1/\theta}$, $n\in \mathbb N$, is satisfied if and only if $f\in L_{p}^{(r)}(\mathbb T)$ and $\|f^{(r)}\|_{p} \le C_{2}(r,p) \Big(\sum_{n=1}^{\infty}n^{\theta r-1} E_{n-1}^{\theta}(f)_{p}\Big)^{1/\theta}$, where $L_{p}^{(r)}(\mathbb T)$ is the class of functions $f\in L_{p}(\mathbb T)$ with absolutely continuous derivative of the $(r-1)$th order and $f^{(r)} \in L_{p}(\mathbb T)$. Theorem 2. Suppose that $1 p \infty$, $\beta=\max\{2,p\}$, $r\in \mathbb N$, and $f\in L_{p}^{(r)}(\mathbb T)$. Then the inequality $n^{-r}\Big(\sum_{\nu=1}^{n}\nu^{\beta r-1} E_{\nu-1}^{\beta}(f)_{p}\Big)^{1/\beta}\le C_{3}(r,p)\omega_{r}(f;\pi/n)_{p}$ is satisfied for $n\in \mathbb N$ if and only if the inequality $\Big(\sum_{n=1}^{\infty}n^{\beta r-1}E_{n-1}^{\beta}(f)_{p}\Big)^{1/\beta}\le C_{4}(r,p)\|f^{(r)}\|_{p}$ is satisfied. In view of the order identity $\sum_{\nu=1}^{n}\nu^{\alpha r-1}E_{\nu-1}^{\alpha}(f)_{p}\asymp\sum_{\nu=1}^{n}\nu^{\alpha r-1} \omega_{l}^{\alpha}(f;\pi/\nu)_{p}$, $n\in\mathbb N\cup\{+\infty\}$, where $1\le\alpha \infty$, $l\in\mathbb N$, and $l>r$, the assertions of Theorems 1 and 2 remain valid if we replace the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$ by the sequence $\{\omega_{l}(f;\pi/n)_{p}\}_{n=1}^{\infty}$ (Theorems 3 and 4). The method used in the proof of Theorems 1 and 2 can be applied to derive equivalent upper estimates and equivalent lower estimates for the values $E_{n-1}(f^{(r)})_{p}$ and $\omega_{k}(f^{(r)};\pi/n)_{p}$, $n\in \mathbb N$, by means of elements of the sequence $\{E_{n-1}(f)_{p}\}_{n=1}^{\infty}$, where $k,r\in \mathbb N$ and $1 p \infty$.
Keywords: best approximation, modulus of smoothness, inequalities of approximation theory, equivalent inequalities, Timan's inequalities, Besov's inequalitie.
@article{TIMM_2018_24_2_a9,
     author = {N. A. Il'yasov},
     title = {On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {93--106},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a9/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 93
EP  - 106
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a9/
LA  - ru
ID  - TIMM_2018_24_2_a9
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 93-106
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a9/
%G ru
%F TIMM_2018_24_2_a9
N. A. Il'yasov. On the equivalence of some inequalities in the theory of approximation of periodic functions in the spaces $L_p(\mathbb T),1 < p < \infty$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 93-106. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a9/

[1] Timan M.F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_{p}\ (1\le p\le \infty)$”, Mat. sb., 46(88):1 (1958), 125–132 | Zbl

[2] Timan M.F., “O teoreme Dzheksona v prostranstvakh $L_p$”, Ukr. mat. zhurn., 18:1 (1966), 134–137 | DOI | MR | Zbl

[3] Besov O.V., “O nekotorykh usloviyakh prinadlezhnosti k $L_p$ proizvodnykh periodicheskikh funktsii”, Nauch. dokl. vyssh. shkoly. Fiz.-mat. nauki, 1959, no. 1, 13–17 | Zbl

[4] Timan A.F., Timan M.F., “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, LXXI:1 (1950), 17–20 | Zbl

[5] Zygmund A., “A remark on the integral modulus of continuity”, Univ. Nac. Tucuman Revista Ser. A., 7 (1950), 259–269 | MR | Zbl

[6] Zygmund A., “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl

[7] Stechkin S.B., “O teoreme Kolmogorova - Seliverstova”, Izv. AN SSSR. Ser. mat., 17:6 (1953), 499–512 | MR | Zbl

[8] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15:3 (1951), 219–242 | Zbl

[9] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.

[10] Hardy G.H., Littlewood J.E., “Some properties of fractional integrals. I.”, Math. Zeit, 27:4 (1928), 565–606 | DOI | MR | Zbl

[11] Marcinkiewicz J., “Sur quelques integrals du type de Dini”, Ann. Soc. Polon. Math., 17 (1938), 42–50

[12] Zygmund A., “On certain integrals”, Trans. Amer. Math. Soc., 55:2 (1944), 170–204 | DOI | MR | Zbl

[13] Riesz M., “Sur les fonctions conjuguees”, Math. Zeit, 27:2 (1927), 218–244 | DOI | MR | Zbl

[14] Zigmund A., Trigonometricheskie ryady, v 2-kh t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR

[15] Quade E.S., “Trigonometric approximation in the mean”, Duke Math. J., 3:3 (1937), 529–543 | DOI | MR

[16] Brudnyi Yu.A., “Kriterii suschestvovaniya proizvodnykh v $L_p$”, Mat. sb., 73(115):1 (1967), 42–64

[17] Zhuk V.V., Approksimatsiya periodicheskikh funktsii, izd-vo Leningr. un-ta, L., 1982, 368 pp. | MR

[18] Khardi G.G., Littlvud D.E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[19] Timan M.F., “Nailuchshee priblizhenie i modul gladkosti funktsii, zadannykh na vsei veschestvennoi osi”, Izv. vuzov. Matematika, 1961, no. 6(25), 108–120 | Zbl