Characterization of optimal trajectories in $\mathbb {R}^3$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 40-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the set of all trajectories $\mathcal T$ of an object $t$ moving in a given corridor $Y$ that are furthest away from a family $\mathbb{S}=\{S\}$ of fixed unfriendly observers. Each observer is equipped with a convex open scanning cone $K(S)$ with vertex $S$. There are constraints on the multiplicity of covering the corridor $Y$ by the cones $K$ and on the “thickness” of the cones. In addition, pairs $S$, $S'$ for which $[S,S']\subset (K(S)\cap K(S'))$ are not allowed. The original problem $\max_{\mathcal T}\min\{ d(t,S):\ t\in \mathcal T,\ S\in \mathbb S\},$ where $d(t,S)=\|t-S\|$ for $t\in K(S)$ and $d(t,S)=+\infty$ for $t\not\in K(S)$, is reduced to the problem of finding an optimal route in a directed graph whose vertices are closed disjoint subsets (boxes) from $Y\backslash \bigcup_{S} K(S)$. Neighboring (adjacent) boxes are separated by some cone $K(S)$. An edge is a part $\mathcal {T}(S)$ of a trajectory $\mathcal T$ that connects neighboring boxes and optimally intersects the cone $K(S)$. The weight of an edge is the deviation of $S$ from $\mathcal {T}(S)$. A route is optimal if it maximizes the minimum weight.
Mots-clés : navigation, observer.
Keywords: tracking problem, moving object
@article{TIMM_2018_24_2_a4,
     author = {V. I. Berdyshev},
     title = {Characterization of optimal trajectories in $\mathbb {R}^3$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {40--45},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a4/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - Characterization of optimal trajectories in $\mathbb {R}^3$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 40
EP  - 45
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a4/
LA  - ru
ID  - TIMM_2018_24_2_a4
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T Characterization of optimal trajectories in $\mathbb {R}^3$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 40-45
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a4/
%G ru
%F TIMM_2018_24_2_a4
V. I. Berdyshev. Characterization of optimal trajectories in $\mathbb {R}^3$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 40-45. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a4/