Voir la notice du chapitre de livre
@article{TIMM_2018_24_2_a25,
author = {A. A. Shaburov},
title = {Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {280--289},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/}
}
TY - JOUR AU - A. A. Shaburov TI - Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 280 EP - 289 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/ LA - ru ID - TIMM_2018_24_2_a25 ER -
%0 Journal Article %A A. A. Shaburov %T Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only %J Trudy Instituta matematiki i mehaniki %D 2018 %P 280-289 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/ %G ru %F TIMM_2018_24_2_a25
A. A. Shaburov. Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 280-289. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/
[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR
[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR
[4] Vasileva A.B., Dmitriev M.G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Ser. Mat. analiz. Itogi nauki i tekhniki, 20, VINITI, M., 1982, 3–77 | MR
[5] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl
[6] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp. | MR
[7] Kalinin A.I., Semenov K.V., “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 44:3 (2004), 432–443 | MR | Zbl
[8] Danilin A.R., Parysheva Yu. V., “Asimptotika optimalnogo znacheniya funktsionala kachestva v lineinoi zadache optimalnogo upravleniya”, Dokl. AN, 427:2 (2009), 151–154 | MR | Zbl
[9] Danilin A.R., Kovrizhnykh O.O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612–614 | DOI | Zbl
[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 471 pp.
[11] Shaburov A.A., “Asymptotic expansion of a solution for one singularly perturbed optimal control problem in $\mathbb{R}^n$ with a convex integral quality index”, Ural Math. J., 3:1 (2017), 65–75 | DOI | MR
[12] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.
[13] Danilin A. R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR