Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 280-289
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem with a convex integral performance index for a linear system with fast and slow variables in the class of piecewise continuous controls with smooth constraints on the control $$\begin{cases}\dot{x}_{\varepsilon}=A_{11}x_{\varepsilon}+A_{12}y_{\varepsilon}+B_{1}u, t\in[0,T], \quad \|u\|\leqslant 1,\\ \varepsilon\dot{y}_{\varepsilon}=A_{22}y_{\varepsilon}+B_{2}u, x_{\varepsilon}(0)=x^{0}, \quad y_{\varepsilon}(0)=y^{0},\\ J(u)\mathop{:=}\varphi(x_{\varepsilon}(T))+\displaystyle\int\limits_{0}^{T}\,\|u(t)\|^2\,dt\rightarrow\min,\end{cases}$$ where $x\in\mathbb{R}^{n}$, $y\in\mathbb{R}^{m}$, $u\in\mathbb{R}^{r}$, $A_{ij}$ and $B_{i}$ for $i,j=1,2$ are constant matrices of corresponding dimension, and the function $\varphi(\cdot)$ is continuously differentiable in $\mathbb{R}^{n}$, strictly convex, and cofinite in the sense of convex analysis. In the general case, Pontryagin's maximum principle is applied as a necessary and sufficient optimality condition in this problem, and there exists a unique vector $l_\varepsilon$ that defines an optimal control by the formula $$u_\varepsilon(T-t)=\frac{C_\varepsilon^{*}(t)l_\varepsilon} {S\left(\|C_\varepsilon^{*}(t)l_\varepsilon\|\right)}, $$ where $$ C_\varepsilon(t)\mathop{:=}e^{\mathcal{A}_\varepsilon~t} \mathcal{B}_\varepsilon=e^{A_{11}t} B_1 + \varepsilon^{-1}\mathcal {W}_\varepsilon(t)B_2, \qquad S(\xi)\mathop{:=}\begin{cases} 2, 0\leqslant \xi\leqslant2,\\[1ex] \xi, \xi>2. \end{cases}$$ The main difference of this problem from the author's previous papers is that the terminal part of the performance index depends on the slow variables only and the control system has a more general form. It is proved that, in the case of a finite number of points where the type of the control is changed, a power asymptotic expansion can be constructed for the initial vector $l_\varepsilon$ of the conjugate system that defines the type of the optimal control.
Keywords: optimal control, singularly perturbed problems, asymptotic expansion, small parameter.
@article{TIMM_2018_24_2_a25,
     author = {A. A. Shaburov},
     title = {Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {280--289},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/}
}
TY  - JOUR
AU  - A. A. Shaburov
TI  - Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 280
EP  - 289
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/
LA  - ru
ID  - TIMM_2018_24_2_a25
ER  - 
%0 Journal Article
%A A. A. Shaburov
%T Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 280-289
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/
%G ru
%F TIMM_2018_24_2_a25
A. A. Shaburov. Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 280-289. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a25/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR

[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[4] Vasileva A.B., Dmitriev M.G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Ser. Mat. analiz. Itogi nauki i tekhniki, 20, VINITI, M., 1982, 3–77 | MR

[5] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[6] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp. | MR

[7] Kalinin A.I., Semenov K.V., “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 44:3 (2004), 432–443 | MR | Zbl

[8] Danilin A.R., Parysheva Yu. V., “Asimptotika optimalnogo znacheniya funktsionala kachestva v lineinoi zadache optimalnogo upravleniya”, Dokl. AN, 427:2 (2009), 151–154 | MR | Zbl

[9] Danilin A.R., Kovrizhnykh O.O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612–614 | DOI | Zbl

[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 471 pp.

[11] Shaburov A.A., “Asymptotic expansion of a solution for one singularly perturbed optimal control problem in $\mathbb{R}^n$ with a convex integral quality index”, Ural Math. J., 3:1 (2017), 65–75 | DOI | MR

[12] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[13] Danilin A. R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR