Cameron-Liebler line classes in PG(n, 5)
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 158-172

Voir la notice de l'article provenant de la source Math-Net.Ru

A Cameron-Liebler line class with parameter $x$ in a finite projective geometry PG$(n, q)$ of dimension $n$ over a field with $q$ elements is a set $\mathcal{L}$ of lines such that any line $\ell$ intersects $x(q+1)+\chi_{\mathcal{L}}(\ell)(q^{n-1}+\dots+q^2-1)$ lines from $\mathcal{L}$, where $\chi_{\mathcal{L}}$ is the characteristic function of the set $\mathcal{L}$. The generalized Cameron-Liebler conjecture states that for $n>3$ all Cameron-Liebler classes are known and have a trivial structure in some sense (more exactly, up to complement, the empty set, a point-pencil, all lines of a hyperplane, and the union of the last two for nonincident point and hyperplane). The validity of the conjecture was proved earlier by other authors for the cases $q=2$, 3, and 4. In the present paper we describe an approach to proving the conjecture for given $q$ under the assumption that all Cameron-Liebler classes in PG$(3,q)$ are known. We use this approach to prove the generalized Cameron-Liebler conjecture in the case $q=5$.
Keywords: finite projective geometry, Cameron-Liebler line classes.
@article{TIMM_2018_24_2_a14,
     author = {I. Matkin},
     title = {Cameron-Liebler line classes in {PG(n,} 5)},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {158--172},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a14/}
}
TY  - JOUR
AU  - I. Matkin
TI  - Cameron-Liebler line classes in PG(n, 5)
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 158
EP  - 172
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a14/
LA  - ru
ID  - TIMM_2018_24_2_a14
ER  - 
%0 Journal Article
%A I. Matkin
%T Cameron-Liebler line classes in PG(n, 5)
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 158-172
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a14/
%G ru
%F TIMM_2018_24_2_a14
I. Matkin. Cameron-Liebler line classes in PG(n, 5). Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 158-172. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a14/