Voir la notice du chapitre de livre
Mots-clés : implicit constraint, variable domains, $\Gamma$-convergence.
@article{TIMM_2018_24_2_a10,
author = {A. A. Kovalevsky},
title = {On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {107--122},
year = {2018},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/}
}
TY - JOUR AU - A. A. Kovalevsky TI - On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 107 EP - 122 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/ LA - ru ID - TIMM_2018_24_2_a10 ER -
%0 Journal Article %A A. A. Kovalevsky %T On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions %J Trudy Instituta matematiki i mehaniki %D 2018 %P 107-122 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/ %G ru %F TIMM_2018_24_2_a10
A. A. Kovalevsky. On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 107-122. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/
[1] Dal Maso G., “Asymptotic behaviour of minimum problems with bilateral obstacles”, Ann. Mat. Pura Appl.(4), 129:1 (1981), 327–366 | DOI | MR
[2] Kovalevskii A.A., “O nekotorykh voprosakh, svyazannykh s problemoi usredneniya variatsionnykh zadach dlya funktsionalov s peremennoi oblastyu opredeleniya”, Sovremennyi analiz i ego prilozheniya, Naukova dumka, Kiev, 1989, 62–70
[3] Boccardo L., Murat F., “Homogenization of nonlinear unilateral problems”, Composite Media and Homogenization Theory, Progr. Nonlinear Differential Equations Appl., 5, Birkhäuser, Boston, 1991, 81–105 | DOI | MR
[4] Kovalevskii A.A., “G-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov divergentnogo vida s peremennoi oblastyu opredeleniya”, Izv. RAN. Ser. matematicheskaya, 58:3 (1994), 3–35 | MR
[5] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI | MR | Zbl
[6] Sandrakov G.V., “Osrednenie variatsionnykh neravenstv i uravnenii, opredelennykh psevdomonotonnym operatorom”, Mat. sb., 199:1 (2008), 67–100 | DOI | MR | Zbl
[7] Kovalevskii A.A., “Usrednenie peremennykh variatsionnykh zadach”, Dokl. AN USSR. Ser. A, 1988, no. 8, 6–9
[8] Zhikov V.V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matematicheskaya, 47:5 (1983), 961–998 | MR | Zbl
[9] Khruslov E.Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl
[10] Evans L.C., Partial differential equations, AMS, Providence, 1998, 662 pp. | MR | Zbl
[11] Zhikov V.V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Mat. sb., 183:8 (1992), 47–84
[12] Kovalevskii A.A., “O $Gamma$-skhodimosti integralnykh funktsionalov, opredelennykh na slabo svyazannykh sobolevskikh prostranstvakh”, Ukr. mat. zhurn., 48:5 (1996), 614–628 | MR
[13] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR