On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 107-122
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For functionals defined on variable Sobolev spaces, we establish a series of results on the convergence of their minimizers and minimum values on sets of functions subject to implicit constraints by means of periodic rapidly oscillating functions. In connection with the formulation and justification of these results, we introduce the definition of $Gamma$-convergence of functionals corresponding to the given sets of constraints. The specificity of the introduced definition is that it refers to the convergence of a sequence of functionals defined on variable Sobolev spaces to a function on the real line. The considered minimization problems have the feature that, to justify the convergence of a sequence of their solutions, the strong connectedness of the domains of definition of the corresponding functionals is not required, while this connectedness is essential, for instance, in the study of the convergence of solutions of the Neumann variational problems and variational problems with explicit unilateral and bilateral constraints in variable domains. In addition to the mentioned results, we establish theorems on the $Gamma$-compactness of sequences of functionals with respect to the given sets of constraints.
Keywords: variational problem, functional, minimizer, minimum value
Mots-clés : implicit constraint, variable domains, $\Gamma$-convergence.
@article{TIMM_2018_24_2_a10,
     author = {A. A. Kovalevsky},
     title = {On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {107--122},
     year = {2018},
     volume = {24},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 107
EP  - 122
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/
LA  - ru
ID  - TIMM_2018_24_2_a10
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 107-122
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/
%G ru
%F TIMM_2018_24_2_a10
A. A. Kovalevsky. On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 2, pp. 107-122. http://geodesic.mathdoc.fr/item/TIMM_2018_24_2_a10/

[1] Dal Maso G., “Asymptotic behaviour of minimum problems with bilateral obstacles”, Ann. Mat. Pura Appl.(4), 129:1 (1981), 327–366 | DOI | MR

[2] Kovalevskii A.A., “O nekotorykh voprosakh, svyazannykh s problemoi usredneniya variatsionnykh zadach dlya funktsionalov s peremennoi oblastyu opredeleniya”, Sovremennyi analiz i ego prilozheniya, Naukova dumka, Kiev, 1989, 62–70

[3] Boccardo L., Murat F., “Homogenization of nonlinear unilateral problems”, Composite Media and Homogenization Theory, Progr. Nonlinear Differential Equations Appl., 5, Birkhäuser, Boston, 1991, 81–105 | DOI | MR

[4] Kovalevskii A.A., “G-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov divergentnogo vida s peremennoi oblastyu opredeleniya”, Izv. RAN. Ser. matematicheskaya, 58:3 (1994), 3–35 | MR

[5] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI | MR | Zbl

[6] Sandrakov G.V., “Osrednenie variatsionnykh neravenstv i uravnenii, opredelennykh psevdomonotonnym operatorom”, Mat. sb., 199:1 (2008), 67–100 | DOI | MR | Zbl

[7] Kovalevskii A.A., “Usrednenie peremennykh variatsionnykh zadach”, Dokl. AN USSR. Ser. A, 1988, no. 8, 6–9

[8] Zhikov V.V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matematicheskaya, 47:5 (1983), 961–998 | MR | Zbl

[9] Khruslov E.Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl

[10] Evans L.C., Partial differential equations, AMS, Providence, 1998, 662 pp. | MR | Zbl

[11] Zhikov V.V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Mat. sb., 183:8 (1992), 47–84

[12] Kovalevskii A.A., “O $Gamma$-skhodimosti integralnykh funktsionalov, opredelennykh na slabo svyazannykh sobolevskikh prostranstvakh”, Ukr. mat. zhurn., 48:5 (1996), 614–628 | MR

[13] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR