Variations of the $v$-change of time in problems with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 76-92
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a general optimal control problem with a state constraint, we propose a proof of the maximum principle based on a $v$-change of the time variable $t\mapsto \tau,$ under which the original time becomes yet another state variable subject to the equation $dt/d\tau = v(\tau),$ while the additional control $v(\tau)\ge 0$ is piecewise constant and its values are arguments of the new problem. Since the state constraint generates a continuum of inequality constraints in this problem, the necessary optimality conditions involve a measure. Rewriting these conditions in terms of the original problem, we get a nonempty compact set of collections of Lagrange multipliers that fulfil the maximum principle on a finite set of values of the control and time variables corresponding to the $v$-change. The compact sets generated by all possible piecewise constant $v$-changes are partially ordered by inclusion, thus forming a centered family. Taking any element of their intersection, we obtain a universal optimality condition, in which the maximum principle holds for all values of the control and time.
Keywords: Pontryagin maximum principle, $v$-change of time, state constraint, semi-infinite problem, function of bounded variation, finite-valued maximum condition, centered family of compact sets.
Mots-clés : Lagrange multipliers, Lebesgue-Stieltjes measure
@article{TIMM_2018_24_1_a7,
     author = {A. V. Dmitruk and N. P. Osmolovskii},
     title = {Variations of the $v$-change of time in problems with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--92},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/}
}
TY  - JOUR
AU  - A. V. Dmitruk
AU  - N. P. Osmolovskii
TI  - Variations of the $v$-change of time in problems with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 76
EP  - 92
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/
LA  - ru
ID  - TIMM_2018_24_1_a7
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%A N. P. Osmolovskii
%T Variations of the $v$-change of time in problems with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 76-92
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/
%G ru
%F TIMM_2018_24_1_a7
A. V. Dmitruk; N. P. Osmolovskii. Variations of the $v$-change of time in problems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 76-92. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 393 pp. | MR

[2] Dubovitskii A.Ya., Milyutin A.A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | MR

[3] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 543 pp. | MR

[4] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd-vo mekhmata MGU, M., 2004, 168 pp. URL: http://www.math.msu.su/department/opu/node/139

[5] E. M. Galeev, M.I. Zelikin, S.V. Konyagin [i dr.], Optimalnoe upravlenie, eds. pod red. N. P. Osmolovskogo, V. M. Tikhomirova, MTsNMO, M., 2008, 320 pp.

[6] Dubovitskii A.Ya., Milyutin A.A., “Teoriya printsipa maksimuma”, Metody teorii ekstremalnykh zadach v ekonomike, sb. st., eds. V.L. Levin, Nauka, TsEMI, M., 1981, 6–47 | MR

[7] Girsanov I.V., Lektsii po teorii ekstremalnykh zadach, Izd-vo MGU, M., 1970, 122 pp.

[8] Milyutin A.A., “Printsip maksimuma v regulyarnoi zadache optimalnogo upravleniya”: Afanasev A.P., Dikusar V.V.,Milyutin A.A., Chukanov S.A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, 320 pp. | MR

[9] Milyutin A.A., Printsip maksimuma v obschei zadache optimalnogo upravleniya, Fizmatlit, M., 2001, 303 pp.

[10] Milyutin A.A., “Obschie skhemy polucheniya neobkhodimykh uslovii ekstremuma i zadachi optimalnogo upravleniya”, Uspekhi mat. nauk, 25:5 (155) (1970), 110–116 | MR

[11] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp. | MR

[12] Arutyunov A.V., Printsip maksimuma Pontryagina v teorii optimalnogo upravleniya, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 42, 1997

[13] Vinter R.B., Zheng H., “Necessary conditions for optimal control problems with state constraints”, Transactions of AMS, 350:3 (1998), 1181–1204 | DOI | MR

[14] Bourdin L., Note on Pontryagin maximum principle with running state constraints and smooth dynamics - Proof based on the Ekeland variational principle, 26 pp., arXiv: 1604.04051

[15] Bonnans J.F., Course on optimal control, [e-resource], OROC Ensta, Paris-Tech, 2017 URL: http://www.cmap.polytechnique.fr/~bonnans/notes/oc/oc.html

[16] Arutyunov A.V., Karamzin D.Y., Pereira F.L., “The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited”, JOTA, 149:3 (2011), 474–493 | DOI | MR

[17] Dmitruk A.V., Samylovskiy I.A., “On the relation between two approaches to necessary optimality conditions in problems with state constraints”, JOTA, 173:2 (2017), 391–420 | DOI | MR

[18] Dubovitskii A.Ya., Milyutin A.A., “Translyatsii uravnenii Eilera”, Zhurn. vychisl. matematiki i mat. fiziki, 9:6 (1969), 1263–1284 | MR

[19] Dmitruk A.V., “On the development of Pontryagin's Maximum principle in the works of A.Ya. Dubovitskii and A.A. Milyutin”, Control and Cybernetics, 38:4a (2009), 923–958 | MR

[20] Dmitruk A.V., Osmolovskii N.P., “O dokazatelstve printsipa maksimuma Pontryagina s pomoschyu igolchatykh variatsii”, Fundam. i prikl. matematika, 19:5 (2014), 49–74

[21] Dmitruk A.V., Osmolovskii N.P., “Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints”, SIAM J. Control Optim., 52:6 (2014), 3437–3462 | DOI | MR