Variations of the $v$-change of time in problems with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 76-92

Voir la notice de l'article provenant de la source Math-Net.Ru

For a general optimal control problem with a state constraint, we propose a proof of the maximum principle based on a $v$-change of the time variable $t\mapsto \tau,$ under which the original time becomes yet another state variable subject to the equation $dt/d\tau = v(\tau),$ while the additional control $v(\tau)\ge 0$ is piecewise constant and its values are arguments of the new problem. Since the state constraint generates a continuum of inequality constraints in this problem, the necessary optimality conditions involve a measure. Rewriting these conditions in terms of the original problem, we get a nonempty compact set of collections of Lagrange multipliers that fulfil the maximum principle on a finite set of values of the control and time variables corresponding to the $v$-change. The compact sets generated by all possible piecewise constant $v$-changes are partially ordered by inclusion, thus forming a centered family. Taking any element of their intersection, we obtain a universal optimality condition, in which the maximum principle holds for all values of the control and time.
Keywords: Pontryagin maximum principle, $v$-change of time, state constraint, semi-infinite problem, function of bounded variation, finite-valued maximum condition, centered family of compact sets.
Mots-clés : Lagrange multipliers, Lebesgue-Stieltjes measure
@article{TIMM_2018_24_1_a7,
     author = {A. V. Dmitruk and N. P. Osmolovskii},
     title = {Variations of the $v$-change of time in problems with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--92},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/}
}
TY  - JOUR
AU  - A. V. Dmitruk
AU  - N. P. Osmolovskii
TI  - Variations of the $v$-change of time in problems with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 76
EP  - 92
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/
LA  - ru
ID  - TIMM_2018_24_1_a7
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%A N. P. Osmolovskii
%T Variations of the $v$-change of time in problems with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 76-92
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/
%G ru
%F TIMM_2018_24_1_a7
A. V. Dmitruk; N. P. Osmolovskii. Variations of the $v$-change of time in problems with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 76-92. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a7/