Method of limiting differential inclusions for nonautonomous discontinuous systems with delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 236-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Functional-differential equations $\dot {x}=f(t,\phi(\cdot))$ with piecewise continuous right-hand sides are studied. It is assumed that the sets $M$ of discontinuity points of the right-hand sides possess the boundedness property in contrast to being zero-measure sets, as in the case of differential equations without delay. This assumption is made largely because the domain of the function $f$ is infinite-dimensional. Solutions to the equations under consideration are understood in Filippov's sense. The main results are theorems on the asymptotic behavior of solutions formulated with the use of invariantly differentiable Lyapunov functionals with fixed-sign derivatives. Nonautonomous systems are difficult to deal with because $\omega$-limiting sets of their solutions do not possess invariance-type properties, whereas sets of zeros of derivatives of Lyapunov functionals may depend on the variable $t$ and extend beyond the space of variables $\phi(\cdot)$. For discontinuous nonautonomous systems, there arises the issue of constructing the limiting differential equations with the use of shifts $f^{\tau}(t+\tau,\phi(\cdot))$ of the function $f$. We introduce the notion of limiting differential inclusion without employing limit passages on sequences of shifts of discontinuous or multivalued mappings. The properties of such inclusions are studied. Invariance-type properties of $\omega$-limiting sets of solutions and analogs of LaSalle's invariance principle are established.
Keywords: limiting functional-differential inclusion, asymptotic behavior of solutions, Lyapunov's functional, invariance principle.
@article{TIMM_2018_24_1_a20,
     author = {I. A. Finogenko},
     title = {Method of limiting differential inclusions for nonautonomous discontinuous systems with delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {236--246},
     year = {2018},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a20/}
}
TY  - JOUR
AU  - I. A. Finogenko
TI  - Method of limiting differential inclusions for nonautonomous discontinuous systems with delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 236
EP  - 246
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a20/
LA  - ru
ID  - TIMM_2018_24_1_a20
ER  - 
%0 Journal Article
%A I. A. Finogenko
%T Method of limiting differential inclusions for nonautonomous discontinuous systems with delay
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 236-246
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a20/
%G ru
%F TIMM_2018_24_1_a20
I. A. Finogenko. Method of limiting differential inclusions for nonautonomous discontinuous systems with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 1, pp. 236-246. http://geodesic.mathdoc.fr/item/TIMM_2018_24_1_a20/

[1] Barbashin E.A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR

[2] Rush N., Abets M., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 300 pp. | MR

[3] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp. | MR

[4] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[5] Surkov A.V., “Ob ustoichivosti funktsionalno-differentsialnykh vklyuchenii s ispolzovaniem invariantno differentsiruemykh funktsionalov Lyapunova”, Differents. uravneniya, 43:8 (2007), 1055–1063 | MR

[6] Martynyuk A.A., Kato D., Shestakov A.A., Ustoichivost dvizheniya: metod predelnykh uravnenii, Naukova dumka, Kiev, 1990, 256 pp. | MR

[7] Sell G.R., “Nonautonomous differential equations and topological dynamics. 1, 2”, Trans. Amer. Math. Soc., 22 (1967), 241–283 | MR

[8] Artstein Z., “The limiting equations of nonautonomous ordinary differential equations”, J. Differ. Equations, 25 (1977), 184–202 | DOI | MR

[9] Andreev A.S., “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomatika i telemekhanika, 2009, no. 9, 4–55

[10] Finogenko I.A., “Predelnye differentsialnye vklyucheniya i printsip invariantnosti dlya neavtonomnykh sistem”, Sib. mat. zhurn., 20:1 (2014), 271–284

[11] Finogenko I.A., “Printsip invariantnosti dlya neavtonomnykh funktsionalno-differentsialnykh vklyuchenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 271–284 | MR

[12] Finogenko I.A., “Printsip invariantnosti dlya neavtonomnykh differentsialnykh uravnenii s razryvnymi pravymi chastyami”, Sib. mat. zhurn., 57:4 (2016), 913–927 | MR

[13] Davy J.L., “Properties of solution set of a generalized differential equation”, Bull. Austral. Math. Soc., 6 (1972), 379–398 | DOI | MR

[14] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[15] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp. | MR

[16] Kim A.V., i-gladkii analiz i funktsionalno-differentsialnye uravneniya, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 1996, 233 pp.