On the commutator subgroups of finite $2$-groups generated by involutions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 77-84

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$ we denote by $d(G)$ the minimum number of its generators and by $G'$ the commutator group of $G$. In 1975 Ustyuzhaninov published without proof the list of finite $2$-groups generated by three involutions with elementary abelian commutator subgroup. In particular, $d(G') \leq 5$ for such a group $G$. Continuing this research, we pose the problem of classifying all finite $2$-groups generated by $n$ involutions (for any $n\geq 2$) with elementary abelian commutator subgroup. For a finite $2$-group $G$ generated by $n$ involutions with $d(G)=n$, we prove that $$d(G') \leq \left(\begin{array}[c]{c}n\\2 \end{array}\right) + 2 \left(\begin{array}[c]{c}n\\3 \end{array}\right) + \dots + (n-1) \left(\begin{array}[c]{c}n\\n \end{array}\right)$$ for any $n \geq 2$ and that the upper bound is attainable. In addition, we construct for any $n \geq 2$ a finite $2$-group generated by $n$ involutions with elementary abelian commutator subgroup of rank $\left(\begin{array}[c]{c}n\\2 \end{array}\right) + 2 \left(\begin{array}[c]{c}n\\3 \end{array}\right) + \dots + (n-1) \left(\begin{array}[c]{c}n\\n \end{array}\right)$. The method of constructing this group is similar to the method used by the author in a number of papers for the construction of Alperin's finite groups. We obtain $G$ as the consecutive semidirect product of groups of order $2$. We also give an example of an infinite $2$-group generated by involutions with infinite elementary abelian commutator subgroup; the example is obtained from the constructed finite $2$-groups.
Mots-clés : $2$-group
Keywords: generation by involutions, commutator subgroup.
@article{TIMM_2017_23_4_a7,
     author = {B. M. Veretennikov},
     title = {On the commutator subgroups of finite $2$-groups generated by involutions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a7/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - On the commutator subgroups of finite $2$-groups generated by involutions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 77
EP  - 84
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a7/
LA  - ru
ID  - TIMM_2017_23_4_a7
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T On the commutator subgroups of finite $2$-groups generated by involutions
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 77-84
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a7/
%G ru
%F TIMM_2017_23_4_a7
B. M. Veretennikov. On the commutator subgroups of finite $2$-groups generated by involutions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 77-84. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a7/