@article{TIMM_2017_23_4_a3,
author = {R. Zh. Aleev and O. V. Mitina and T. A. Khanenko},
title = {Description of the unit group of the integral group ring of a cyclic group of order~$16$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {32--42},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a3/}
}
TY - JOUR AU - R. Zh. Aleev AU - O. V. Mitina AU - T. A. Khanenko TI - Description of the unit group of the integral group ring of a cyclic group of order $16$ JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 32 EP - 42 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a3/ LA - ru ID - TIMM_2017_23_4_a3 ER -
%0 Journal Article %A R. Zh. Aleev %A O. V. Mitina %A T. A. Khanenko %T Description of the unit group of the integral group ring of a cyclic group of order $16$ %J Trudy Instituta matematiki i mehaniki %D 2017 %P 32-42 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a3/ %G ru %F TIMM_2017_23_4_a3
R. Zh. Aleev; O. V. Mitina; T. A. Khanenko. Description of the unit group of the integral group ring of a cyclic group of order $16$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 32-42. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a3/
[1] Aleev R.Zh, Mitina O.V., Khristenko E.A., “Sravnenie po modulyu 2 krugovykh edinits v polyakh $Q_{16}$ i $Q_{32}$”, Chelyab. fiz.-mat. zhurn., 1:4 (2016), 8–29 | MR
[2] Aleev R.Zh, Mitina O.V., Khanenko T.A., “Nakhozhdenie edinits tselochislennykh gruppovykh kolets tsiklicheskikh grupp poryadkov 16 i 32”, Chelyab. fiz.-mat. zhurn., 1:4 (2016), 30–55 | MR
[3] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR
[4] Aleev R.Zh., “Tsentralnye elementy tselochislennykh gruppovykh kolets”, Algebra i logika, 39:5 (2000), 513–525 | MR | Zbl
[5] Aleev R.Zh., “Edinitsy polei kharakterov i tsentralnye edinitsy tselochislennykh gruppovykh kolets konechnykh grupp”, Mat. tr., 3:1 (2000), 3–37 | MR | Zbl