On dendrites generated by polyhedral systems and their ramification points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 281-291
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The methods of construction of self-similar dendrites in $\mathbb R^d$ and their geometric properties are considered. These issues have not yet been studied in the theory of self-similar fractals. We construct and analyze a class of $P$-polyhedral dendrites $K$ in $\mathbb R^d$, which are defined as attractors of systems $S=\{S_1, \ldots, S_m\}$ of contracting similarities in $\mathbb R^d$ sending a given polyhedron $P$ to polyhedra $P_i\subset P$ whose pairwise intersections either are empty or are singletons containing common vertices of the polyhedra, while the hypergraph of pairwise intersections of the polyhedra $P_i$ is acyclic. We prove that there is a countable dense subset $G_S(V_P)\subset K$ such that for any of its points $x$ the local structure of a neighbourhood of $x$ in $K$ is defined by some disjoint family of solid angles with vertex $x$ congruent to the angles at the vertices of $P$. Therefore, the ramification points of a $P$-polyhedral dendrite $K$ have finite order whose upper bound depends only on the polyhedron $P$. We prove that the geometry and dimension of the set $CP(K)$ of the cutting points of $K$ are defined by its main tree, which is a minimal continuum in $K$ containing all vertices of $P$. That is why the dimension $\dim_HCP(K)$ of the set $CP(K)$ is less than the dimension $\dim_H(K)$ of $K$ and $\dim_HCP(K)=\dim_H(K)$ if and only if $K$ is a Jordan arc.
Keywords: self-similar set, polyhedral system, main tree
Mots-clés : dendrite, ramification point, Hausdorff dimension.
@article{TIMM_2017_23_4_a26,
     author = {A. V. Tetenov and M. Samuel and D. A. Vaulin},
     title = {On dendrites generated by polyhedral systems and their ramification points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {281--291},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/}
}
TY  - JOUR
AU  - A. V. Tetenov
AU  - M. Samuel
AU  - D. A. Vaulin
TI  - On dendrites generated by polyhedral systems and their ramification points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 281
EP  - 291
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/
LA  - ru
ID  - TIMM_2017_23_4_a26
ER  - 
%0 Journal Article
%A A. V. Tetenov
%A M. Samuel
%A D. A. Vaulin
%T On dendrites generated by polyhedral systems and their ramification points
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 281-291
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/
%G ru
%F TIMM_2017_23_4_a26
A. V. Tetenov; M. Samuel; D. A. Vaulin. On dendrites generated by polyhedral systems and their ramification points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 281-291. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/

[1] Aseev V.V., Tetenov A.V., Kravchenko A.S., “O samopodobnykh zhordanovykh krivykh na ploskosti”, Sib. mat. zhurn., 44:3 (2003), 481–492 | MR | Zbl

[2] Bandt C., Keller K., “Self-similar sets 2. A simple approach to the topological structure of fractals”, Math. Nachrichten, 154 (1991), 27–39 | DOI | MR | Zbl

[3] Bandt C., Stahnke J., Self-similar sets 6. Interior distance on deterministic fractals, preprint, Greifswald, 1990

[4] Barnsley M.F., Fractals everywhere, Acad. Press, Boston, 1988, 396 pp. | MR | Zbl

[5] Charatonik J., Charatonik W., “Dendrites”, Aportaciones Mat. Comun., 22 (1998), 227–253 | MR | Zbl

[6] Croydon D., Random fractal dendrites, Ph.D. Thesis, St. Cross College, University of Oxford. Trinity, 2006, 161 pp.

[7] Hata M., “On the structure of self-similar sets”, Japan. J. Appl. Math., 3 (1985), 381–414 | DOI | MR

[8] Kigami J., “Harmonic calculus on limits of networks and its application to dendrites”, J. Funct. Anal., 128:1 (1995), 48–86 | DOI | MR | Zbl

[9] Kigami J., Analysis on fractals, Cambridge Tracts in Math., 143, Cambridge Univer. Press, Cambridge, 2001, 226 pp. | MR | Zbl

[10] Strichartz R. S., “Isoperimetric estimates on Sierpinski gasket type fractals”, Trans. Amer. Math. Soc., 351 (1999), 1705–1752 | DOI | MR | Zbl

[11] Tetenov A.V., “Samopodobnye zhordanovy dugi i graf-orientirovannye sistemy podobii”, Sib. mat. zhurn., 47:5 (2006), 1147–1159 | MR | Zbl

[12] Tetenov A.V., Strukturnye teoremy v teorii samopodobnykh fraktalov, dis. d-ra fiz.-mat. nauk, Gorno-Altaisk, 2010, 216 pp.

[13] Zeller. R., Branching dynamical systems and slices through fractals, Ph.D. Thesis, University of Greifswald, 2015