Voir la notice du chapitre de livre
Mots-clés : dendrite, ramification point, Hausdorff dimension.
@article{TIMM_2017_23_4_a26,
author = {A. V. Tetenov and M. Samuel and D. A. Vaulin},
title = {On dendrites generated by polyhedral systems and their ramification points},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {281--291},
year = {2017},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/}
}
TY - JOUR AU - A. V. Tetenov AU - M. Samuel AU - D. A. Vaulin TI - On dendrites generated by polyhedral systems and their ramification points JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 281 EP - 291 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/ LA - ru ID - TIMM_2017_23_4_a26 ER -
A. V. Tetenov; M. Samuel; D. A. Vaulin. On dendrites generated by polyhedral systems and their ramification points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 281-291. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a26/
[1] Aseev V.V., Tetenov A.V., Kravchenko A.S., “O samopodobnykh zhordanovykh krivykh na ploskosti”, Sib. mat. zhurn., 44:3 (2003), 481–492 | MR | Zbl
[2] Bandt C., Keller K., “Self-similar sets 2. A simple approach to the topological structure of fractals”, Math. Nachrichten, 154 (1991), 27–39 | DOI | MR | Zbl
[3] Bandt C., Stahnke J., Self-similar sets 6. Interior distance on deterministic fractals, preprint, Greifswald, 1990
[4] Barnsley M.F., Fractals everywhere, Acad. Press, Boston, 1988, 396 pp. | MR | Zbl
[5] Charatonik J., Charatonik W., “Dendrites”, Aportaciones Mat. Comun., 22 (1998), 227–253 | MR | Zbl
[6] Croydon D., Random fractal dendrites, Ph.D. Thesis, St. Cross College, University of Oxford. Trinity, 2006, 161 pp.
[7] Hata M., “On the structure of self-similar sets”, Japan. J. Appl. Math., 3 (1985), 381–414 | DOI | MR
[8] Kigami J., “Harmonic calculus on limits of networks and its application to dendrites”, J. Funct. Anal., 128:1 (1995), 48–86 | DOI | MR | Zbl
[9] Kigami J., Analysis on fractals, Cambridge Tracts in Math., 143, Cambridge Univer. Press, Cambridge, 2001, 226 pp. | MR | Zbl
[10] Strichartz R. S., “Isoperimetric estimates on Sierpinski gasket type fractals”, Trans. Amer. Math. Soc., 351 (1999), 1705–1752 | DOI | MR | Zbl
[11] Tetenov A.V., “Samopodobnye zhordanovy dugi i graf-orientirovannye sistemy podobii”, Sib. mat. zhurn., 47:5 (2006), 1147–1159 | MR | Zbl
[12] Tetenov A.V., Strukturnye teoremy v teorii samopodobnykh fraktalov, dis. d-ra fiz.-mat. nauk, Gorno-Altaisk, 2010, 216 pp.
[13] Zeller. R., Branching dynamical systems and slices through fractals, Ph.D. Thesis, University of Greifswald, 2015