A metanilpotency criterion for a finite solvable group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 253-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Denote by $|x|$ the order of an element $x$ of a group. An element of a group is called primary if its order is a nonnegative integer power of a prime. If $a$ and $b$ are primary elements of coprime orders of a group, then the commutator $a^{-1}b^{-1}ab$ is called a $\star$-commutator. The intersection of all normal subgroups of a group such that the quotient groups by them are nilpotent is called the nilpotent residual of the group. It is established that the nilpotent residual of a finite group is generated by commutators of primary elements of coprime orders. It is proved that the nilpotent residual of a finite solvable group is nilpotent if and only if $|ab|\ge|a||b|$ for any $\star$-commutators of $a$ and $b$ of coprime orders.
Keywords: finite group, residual, nilpotent group, commutator.
Mots-clés : formation
@article{TIMM_2017_23_4_a23,
     author = {V. S. Monakhov},
     title = {A metanilpotency criterion for a finite solvable group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {253--256},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a23/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - A metanilpotency criterion for a finite solvable group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 253
EP  - 256
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a23/
LA  - ru
ID  - TIMM_2017_23_4_a23
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T A metanilpotency criterion for a finite solvable group
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 253-256
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a23/
%G ru
%F TIMM_2017_23_4_a23
V. S. Monakhov. A metanilpotency criterion for a finite solvable group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 253-256. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a23/

[1] Huppert B., Endliche Gruppen I., Springer, Berlin etc., 1967, 793 pp. | MR | Zbl

[2] Baston R., Shumyatskii P., “Dostatochnoe uslovie nilpotentnosti kommutanta”, Sib. mat. zhurn., 57:5 (2016), 978–980 | MR

[3] Monakhov V.S., “The nilpotency criterion for the derived subgroup of a finite group”, Problemy fiziki, matematiki i tekhniki, 2017, no. 3(32), 58–60 | Zbl

[4] Shmidt O.Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31 (1924), 366–372 | Zbl

[5] Monakhov V.S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Tr. Ukr. mat. kongressa. Sektsiya 1, Izd-vo Instituta matematiki, Kiev, 2001, 81–90

[6] Chunikhin S.A., “O spetsialnykh gruppakh”, Mat. sb., 4:3 (1929), 512–530

[7] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin, N. Y., 1992, 891 pp. | MR

[8] Beidleman J., Heineken H., “Minimal non-$\mathfrak F$-groups”, Ricerche Mat., 58 (2009), 33–41 | DOI | MR | Zbl