On a characterization of the Frattini subgroup of a finite solvable group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 176-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $G$ is a finite solvable group, $n$ is the length of a $G$-chief series of the group $F(G)/\Phi(G)$, and $k$ is the number of central $G$-chief factors of this series. We prove that in this case $G$ contains $4n-3k$ maximal subgroups whose intersection is $\Phi (G)$. This result refines V. S. Monakhov's statement that, for any finite solvable nonnilpotent group $G$, its Frattini subgroup $\Phi(G)$ coincides with the intersection of all maximal subgroups $M$ of the group $G$ such that $MF(G)=G$. In addition, it is shown in Theorem 4.2 that the group $G$ contains $4(n-k)$ maximal subgroups whose intersection is $\delta(G)$. The subgroup $\delta(G)$ is defined as the intersection of all abnormal maximal subgroups of $G$ if $G$ is not nilpotent and as $G$ otherwise.
Mots-clés : finite solvable group
Keywords: maximal subgroup, Frattini subgroup.
@article{TIMM_2017_23_4_a16,
     author = {S. F. Kamornikov},
     title = {On a characterization of the {Frattini} subgroup of a finite solvable group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {176--180},
     year = {2017},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/}
}
TY  - JOUR
AU  - S. F. Kamornikov
TI  - On a characterization of the Frattini subgroup of a finite solvable group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 176
EP  - 180
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/
LA  - ru
ID  - TIMM_2017_23_4_a16
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%T On a characterization of the Frattini subgroup of a finite solvable group
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 176-180
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/
%G ru
%F TIMM_2017_23_4_a16
S. F. Kamornikov. On a characterization of the Frattini subgroup of a finite solvable group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 176-180. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/

[1] Kamornikov S.F., “Intersections of prefrattini subgroups in finite soluble groups”, Int. J. Group Theory, 6:2 (2017), 1–5 | MR

[2] Monakhov V.S., “Zamechanie o maksimalnykh podgruppakh konechnykh grupp”, Dokl. NAN Belarusi, 47:4 (2003), 31–33 | MR | Zbl

[3] Doerk K, Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; N. Y., 1992, 891 pp. | MR

[4] Dolfi S., “Large orbits in coprime actions of solvable groups”, Trans. Amer. Math. Soc., 360:1 (2008), 135–152 | DOI | MR | Zbl

[5] Baer R., “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl

[6] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[7] Dolfi S., “Intersections of odd order Hall subgroups”, Bull. London Math. Soc., 37 (2005), 61–66 | DOI | MR | Zbl

[8] Wolf T., “Large orbits of supersoluble linear groups”, J. Algebra, 215 (1999), 235–247 | DOI | MR | Zbl

[9] Gaschutz W., “Uber die $\Phi $-Untergruppen endlicher Gruppen”, Math. Z., 58 (1953), 160–170 | DOI | MR | Zbl

[10] Monakhov V.S., “Zamechanie o peresechenii nenormalnykh maksimalnykh podgrupp konechnykh grupp”, Izv. GGU im. F. Skoriny, 2004, no. 6(27), 81

[11] Kamornikov S.F., “Ob odnoi kharakterizatsii podgruppy Gashyutsa konechnoi razreshimoi gruppy”, Fund. i prikl. matematika, 20:6 (2015), 65–75 | MR

[12] Vasilev A.F., Vasileva T.I., Syrokvashin A.V., “Zametka o peresecheniyakh nekotorykh maksimalnykh podgrupp konechnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2012, no. 2(11), 62–64 | Zbl