On a characterization of the Frattini subgroup of a finite solvable group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 176-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $G$ is a finite solvable group, $n$ is the length of a $G$-chief series of the group $F(G)/\Phi(G)$, and $k$ is the number of central $G$-chief factors of this series. We prove that in this case $G$ contains $4n-3k$ maximal subgroups whose intersection is $\Phi (G)$. This result refines V. S. Monakhov's statement that, for any finite solvable nonnilpotent group $G$, its Frattini subgroup $\Phi(G)$ coincides with the intersection of all maximal subgroups $M$ of the group $G$ such that $MF(G)=G$. In addition, it is shown in Theorem 4.2 that the group $G$ contains $4(n-k)$ maximal subgroups whose intersection is $\delta(G)$. The subgroup $\delta(G)$ is defined as the intersection of all abnormal maximal subgroups of $G$ if $G$ is not nilpotent and as $G$ otherwise.
Mots-clés :
finite solvable group
Keywords: maximal subgroup, Frattini subgroup.
Keywords: maximal subgroup, Frattini subgroup.
@article{TIMM_2017_23_4_a16,
author = {S. F. Kamornikov},
title = {On a characterization of the {Frattini} subgroup of a finite solvable group},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {176--180},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/}
}
TY - JOUR AU - S. F. Kamornikov TI - On a characterization of the Frattini subgroup of a finite solvable group JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 176 EP - 180 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/ LA - ru ID - TIMM_2017_23_4_a16 ER -
S. F. Kamornikov. On a characterization of the Frattini subgroup of a finite solvable group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 176-180. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a16/