On the order of decrease of uniform moduli of smoothness for the classes of periodic functions~$H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p \infty$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 162-175
Voir la notice de l'article provenant de la source Math-Net.Ru
S. B. Stechkin posed the following problem: for given $1\le p$, $r\in\mathbb Z_{+}$, $l,k\in\mathbb N$, and $\omega \in\Omega_{l}(0,\pi]$, find the exact order of decrease of the $L_{q}(\mathbb T)$-modulus of smoothness of the $k$th order $\omega_{k}(f^{(r)};\delta)_{q}$ on the classes of $2\pi$-periodic functions $H_{p}^{l}[\omega]=\{f\in L_{p}(\mathbb T):$ $\omega_{l}(f;\delta)_{p}\le\omega(\delta),\,\delta\in(0,\pi]\}$, where $\mathbb T=(-\pi,\pi]$, $L_{\infty}(\mathbb T)\equiv C(\mathbb T)$, and $\Omega_{l}(0,\pi]$ is the class of functions $\omega=\omega(\delta)$ defined on $(0,\pi]$ and satisfying the conditions $0\omega(\delta)\downarrow 0\ (\delta\downarrow 0)$ and $\delta^{-l}\omega(\delta)\downarrow (\delta\uparrow)$. Earlier the author solved this problem in the case $1\le p$. In the present paper, we give a solution in the case $1\le p$; more exactly, we prove the following theorems. Theorem 1. Suppose that $1\le p\infty$, $f\in L_{p}(\mathbb T)$, $r\in\mathbb Z_{+}$, $l,k\in\mathbb N$, $l>\sigma=r+1/p$, $\rho=l-(k+\sigma)$, and $\sum_{n=1}^{\infty}n^{\sigma-1}\omega_{l}(f;\pi/n)_p\infty$. Then $f$ is equivalent to some function $\psi\in C^{r}(\mathbb T)$and the following estimate holds:$\omega_{k}(\psi^{(r)};\pi/n)_{\infty} \le C_{1}(l,k,r,p)\Big\{\sum_{\nu=n+1}^{\infty}\nu^{\sigma-1}\omega_{l}(f;\pi/\nu)_{p}+ \chi(\rho)n^{-k}\sum_{\nu=1}^{n}\nu^{k+\sigma-1}\omega_{l}(f;\pi/\nu)_{p}\Big\}$, $n\in\mathbb N$, where $\chi(t)=0$ for $t\le 0$, $\chi(t)=1$ for $t>0$, and $C^{r}(\mathbb T)$ is the class of functions $\psi \in C(\mathbb T)$ that have the usual $r$th-order derivative $\psi^{(r)}\in C(\mathbb T)$ $($we assume that $\psi^{(0)}=\psi$ and $C^{(0)}(\mathbb T)=C(\mathbb T))$. Note that this estimate covers all possible cases of relations between $l$ and $k+r$. Theorem 2. Suppose that $1\le p\infty$, $r\in\mathbb Z_{+}$, $l,k\in\mathbb N$, $l>\sigma=r+1/p$, $\rho=l-(k+\sigma)$, $\omega \in\Omega_{l}(0,\pi]$, and $\sum_{n=1}^{\infty}n^{\sigma-1}\omega(\pi/n)\infty$. Then $\sup\{\omega_{k}(\psi^{(r)};\pi/n)_{\infty}:$ $f\in H_{p}^{l}[\omega]\}\asymp\sum_{\nu=n+1}^{\infty}\nu^{\sigma-1}\omega(\pi/\nu)+\chi(\rho)n^{-k} \times \sum_{\nu=1}^{n}\nu^{k+\sigma-1}\omega(\pi/\nu)$, $n\in\mathbb N$, where $\psi$ denotes the corresponding function from $C^{r}(\mathbb T)$ equivalent to $f\in H_{p}^{l}[\omega]$. In Theorems $1$ and $2$, the case $l=k+\sigma=k+r+1/p$ $(\Rightarrow \chi(\rho)=0)$ is of the most interest. This case is possible only for $p=1$, since $r\in\mathbb Z_{+}$ and $l,k\in\mathbb N$. In this case, the proof of the estimate in Theorem $1$ employs the inequality $n^{-l}\|T_{n,1}^{(l)}(f;\cdot)\|_{\infty} \le C_{2}(l)n\omega_{l+1}(f;\pi/n)_{1}$, where $T_{n,1}(f;\cdot)$ is a best approximation polynomial for the function $f\in L_{1}(\mathbb T)$. The latter inequality is derived from the strengthened version of the inequality of different metrics for derivatives of arbitrary trigonometric polynomials $\|t_{n}^{(l)}(\cdot)\|_{\infty}\le 2^{-1}\pi\|t_{n}^{(l+1)}(\cdot)\|_{1}$, $n\in\mathbb N$.
Keywords:
modulus of smoothness, best approximation, inequality between moduli of smoothness of different orders in different metrics, exact order of decrease for uniform moduli of smoothness on a class.
@article{TIMM_2017_23_4_a15,
author = {N. A. Il'yasov},
title = {On the order of decrease of uniform moduli of smoothness for the classes of periodic functions~$H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {162--175},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a15/}
}
TY - JOUR
AU - N. A. Il'yasov
TI - On the order of decrease of uniform moduli of smoothness for the classes of periodic functions~$H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$
JO - Trudy Instituta matematiki i mehaniki
PY - 2017
SP - 162
EP - 175
VL - 23
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a15/
LA - ru
ID - TIMM_2017_23_4_a15
ER -
%0 Journal Article
%A N. A. Il'yasov
%T On the order of decrease of uniform moduli of smoothness for the classes of periodic functions~$H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 162-175
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a15/
%G ru
%F TIMM_2017_23_4_a15
N. A. Il'yasov. On the order of decrease of uniform moduli of smoothness for the classes of periodic functions~$H_{p}^{l}[\omega],\ l\in \mathbb N,\ 1\le p < \infty$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 4, pp. 162-175. http://geodesic.mathdoc.fr/item/TIMM_2017_23_4_a15/