Upper and lower resolving functions in dynamic game problems
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 293-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with game problems on the approach of trajectories of a nonstationary quasilinear system to a variable cylindrical terminal set. The case is studied when Pontryagin's classical condition fails. The notions of upper and lower resolving functions are introduced in the form of selections of special set-valued mappings. These functions are used to derive sufficient solvability conditions, which differ from the known ones. The results are illustrated with a model example.
Keywords: conflict-controlled process, set-valued mapping, Pontryagin's condition, Aumann's integral, resolving function.
@article{TIMM_2017_23_1_a27,
     author = {A. A. Chikrii},
     title = {Upper and lower resolving functions in dynamic game problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {293--305},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a27/}
}
TY  - JOUR
AU  - A. A. Chikrii
TI  - Upper and lower resolving functions in dynamic game problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 293
EP  - 305
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a27/
LA  - ru
ID  - TIMM_2017_23_1_a27
ER  - 
%0 Journal Article
%A A. A. Chikrii
%T Upper and lower resolving functions in dynamic game problems
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 293-305
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a27/
%G ru
%F TIMM_2017_23_1_a27
A. A. Chikrii. Upper and lower resolving functions in dynamic game problems. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 293-305. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a27/

[1] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Krasovskii A.N., Krasovskii N.N., Control under lack of information, Birkhauser, Boston, 1995, 322 pp. | MR

[4] Krasovskii N.N., Lukoyanov N.Yu., “Uravneniya tipa Gamiltona - Yakobi v nasledstvennykh sistemakh: minimaksnye resheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6:1–2 (2000), 110–130

[5] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[6] Kurzhanskii A.B., Melnikov N.B., “O zadache sinteza upravlenii: alternirovannyi integral Pontryagina i uravnenie Gamiltona - Yakobi”, Mat. sb., 191:6 (2000), 69–100 | DOI | MR

[7] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[8] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp. | MR

[9] Chentsov A.G., Asymptotic attainability, Kluwer Acad. Publ., Boston; London; Dordrecht, 1997, 322 pp. | MR | Zbl

[10] Subbotina N.N., Shagalova A.G., “O nepreryvnom prodolzhenii obobschennogo resheniya uravneniya Gamiltona - Yakobi kharakteristikami, obrazuyuschimi tsentralnoe pole ekstremalei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 220–234 | MR

[11] Subbotina N.N., “The method of characteristics for Hamilton-Jacobi equation and its applications in dynamical optimization”, J. Math. Sci. (N.Y.), 135:3 (2006), 2955–3091 | DOI | MR

[12] Tarasev A.N., Ushakov V. N., “O postroenii stabilnykh mostov v minimaksnoi igre sblizheniya-ukloneniya”, Dep. v VINITI, 1983, 2454-83, Sverdlovsk, 61 pp.

[13] Ushakov V. N., Malev A.G., “K voprosu o defekte stabilnosti v igrovoi zadache o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 199–222

[14] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp.

[15] Nikolskii M.S., “Stroboskopicheskie strategii i pervyi pryamoi metod L.S. Pontryagina v kvazilineinykh nestatsionarnykh differentsialnykh igrakh presledovaniya-ubeganiya”, Probl. Control Inform. Theory, 11:5 (1982), 373–377 | MR

[16] Chikrii A.A., Conflict controlled processes, Springer Science and Busines Media, Boston; London; Dordrecht, 2013, 424 pp.

[17] Chikrii A.A., “Ob odnom analiticheskom metode v dinamicheskikh igrakh sblizheniya”, Tr. MIAN, 271 (2010), 76–92 | Zbl

[18] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1980, 198 pp.

[19] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.

[20] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston; Basel; Berlin, 1990, 461 pp. | MR | Zbl

[21] Hajek O., Pursuit games. An introduction to the theory and applications of differential games of pursuit and evasion, Math. Science and Engineering, 120, Acad. Press, New York, 1975, 266 pp. | MR | Zbl

[22] Polovinkin E.S., Elementy teorii mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1982, 127 pp.

[23] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp.