Construction of strongly time-consistent subcores in differential games with prescribed duration
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 219-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new strongly time-consistent (dynamically stable) optimality principle is proposed in a cooperative differential game. This is done by constructing a special subset of the core of the game. It is proposed to consider this subset as a new optimality principle. The construction is based on the introduction of a function $\hat{V}$ that dominates the values of the classical characteristic function in coalitions. Suppose that $V(S,\bar{x}(\tau),T-\tau)$ is the value of the classical characteristic function computed in the subgame with initial conditions $\bar{x}(\tau)$, $T-\tau$ on the cooperative trajectory. Define $$\hat{V}(S;x_0,T-t_0)=\displaystyle\max_{t_0\leq \tau\leq T}\frac{V(S;x^*(\tau),T-\tau)}{V(N;x^*(\tau),T-\tau)}V(N;x_0,T-t_0).$$ Using this function, we construct an analog of the classical core. It is proved that the constructed core is a subset of the classical core; thus, we can consider it as a new optimality principle. It is proved also that the newly constructed optimality principle is strongly time-consistent.
Keywords: cooperative differential game, strong time consistency, subcore
Mots-clés : core, imputation.
@article{TIMM_2017_23_1_a21,
     author = {L. A. Petrosyan and Ya. B. Pankratova},
     title = {Construction of strongly time-consistent subcores in differential games with prescribed duration},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {219--227},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a21/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - Ya. B. Pankratova
TI  - Construction of strongly time-consistent subcores in differential games with prescribed duration
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 219
EP  - 227
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a21/
LA  - ru
ID  - TIMM_2017_23_1_a21
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A Ya. B. Pankratova
%T Construction of strongly time-consistent subcores in differential games with prescribed duration
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 219-227
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a21/
%G ru
%F TIMM_2017_23_1_a21
L. A. Petrosyan; Ya. B. Pankratova. Construction of strongly time-consistent subcores in differential games with prescribed duration. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 219-227. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a21/

[1] Kleimenov A.F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka: Ural. otd-nie, Ekaterinburg, 1993, 184 pp.

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974, 456 pp.

[3] Petrosyan L.A., Danilov N.N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestn. Leningrad. un-ta. Ser.1: Matematika, mekhanika, astronomiya, 1979, no. 1, 52–59 | Zbl

[4] Petrosyan L.A., “Silno dinamicheski ustoichivye differentsialnye printsipy optimalnosti”, Vestn. S.-Peterb. un-ta. Ser.1: Matematika, mekhanika, astronomiya, 1993, no. 4, 40–46 | Zbl

[5] Petrosyan L.A., “Kharakteristicheskie funktsii v kooperativnykh differentsialnykh igrakh”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 1995, no. 1, 48–52 | Zbl

[6] Basar T., Olsder G.J., Dynamic noncooperative game theory, Acad. Press, London, 1982, 429 pp. | MR | Zbl

[7] E.J. Dockner, S. Jorgensen., N.V. Long, G. Sorger, Differential games in economics and management science, Cambridge Univ. Press, Cambridge, 2000, 382 pp. | MR | Zbl

[8] Nash J., “Non-cooperative games”, Ann. Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[9] Neumann J., Morgenstern O., Theory of games and economic behavior, Princeton Univ. Press, Princeton, 1947, 641 pp. | MR | Zbl

[10] Shapley L.S., “A Value for $n$-person games”, Contributions to the theory of games, eds. H.W. Kuhn and A.W. Tucker, Princeton Univ. Press, Princeton, 1953, 307–315 | MR

[11] Yeung D.W.K., Petrosyan L.A., Subgame consistent economic optimization, Static Dynamic Game Theory: Foundations Applications, Birkhauser, New York, 2012, 395 pp. | DOI | MR | Zbl