A multiple capture of an evader in linear recursive differential games
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 212-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a finite-dimensional Euclidean space, we consider a linear nonstationary problem in which one evader is pursued by a group of players and all the participants have equal capabilities. The problem is described by the system $$\dot z_i=A(t)z_i+u_i-v,\quad z_i(t_0)=z_i^0,\quad u_i, v \in V,$$ where the set of admissible controls $V$ is a strictly convex compact set with smooth boundary. It is assumed that the fundamental matrix $\Phi(t)$ of the homogeneous system $\dot w=A(t)w$, $\Phi(t_0)=E$ is a Zubov recursive function and its derivative is uniformly bounded. The aim of the pursuing group is to capture the evader by at least $r$ different pursuers. We assume that the terminal sets are convex and compact. The pursuers use quasistrategies. We obtain sufficient conditions for the solvability of the pursuit problem in terms of the initial positions. Examples are given.
Keywords: differential game, group pursuit, recursive function.
@article{TIMM_2017_23_1_a20,
     author = {N. N. Petrov and N. A. Solov'eva},
     title = {A multiple capture of an evader in linear recursive differential games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {212--218},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a20/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - N. A. Solov'eva
TI  - A multiple capture of an evader in linear recursive differential games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 212
EP  - 218
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a20/
LA  - ru
ID  - TIMM_2017_23_1_a20
ER  - 
%0 Journal Article
%A N. N. Petrov
%A N. A. Solov'eva
%T A multiple capture of an evader in linear recursive differential games
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 212-218
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a20/
%G ru
%F TIMM_2017_23_1_a20
N. N. Petrov; N. A. Solov'eva. A multiple capture of an evader in linear recursive differential games. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 212-218. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a20/

[1] Chikrii A.A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[2] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo Mosk. gos. un-ta, M., 1990, 197 pp.

[3] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.

[4] Pshenichnyi B.N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[5] Grigorenko N.L., “Igra prostogo presledovaniya-ubeganiya gruppy presledovatelei i odnogo ubegayuschego”, Vestn. MGU. Ser. Vychislit. matematika i kibernetika, 1983, no. 1, 41–47 | Zbl

[6] Blagodatskikh A.I., “Odnovremennaya mnogokratnaya poimka v zadache prostogo presledovaniya”, Prikl. matematika i mekhanika, 73:1 (2009), 54–59 | MR | Zbl

[7] Petrov N.N., “Mnogokratnaya poimka v primere L.S. Pontryagina s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 61:5 (1997), 747–754 | MR | Zbl

[8] Blagodatskikh A.I., “Mnogokratnaya poimka v primere Pontryagina”, Vest. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki)., 2009, no. 2, 3–12

[9] Petrov N.N., Soloveva N.A., “Mnogokratnaya poimka v rekurrentnom primere L.S. Pontryagina s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 178–186

[10] Petrov N.N., Soloveva N.A., “Mnogokratnaya poimka v rekurrentnom primere L.S.Pontryagina”, Avtomatika i telemekhanika, 2016, no. 5, 128–135 | Zbl

[11] Soloveva N.A., “Odna zadacha gruppovogo presledovaniya v lineinykh rekurrentnykh differentsialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 3:1 (2011), 81–90

[12] Bannikov A.S., Petrov N.N., “K nestatsionarnoi zadache gruppovogo presledovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 40–51 | MR

[13] Vinogradova M.N., Petrov N.N., Soloveva N.A., “Poimka dvukh skoordinirovannykh ubegayuschikh v lineinykh rekurrentnykh differentsialnykh igrakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 41–48 | MR

[14] Zubov V.I., “K teorii rekurrentnykh funktsii”, Sib. mat. zhurn., 3:4 (1962), 532–560 | Zbl