On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 88-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known that a real-valued function defined on a metric space is upper (lower) semicontinuous if and only if it is a lower (upper) envelope of a family of continuous functions. In this paper, for functions defined on real normed spaces, this classical result is refined as follows. An upper (lower) bounded real-valued function defined on a normed space is upper (lower) semicontinuous if and only if it can be represented as a lower (upper) envelope of a family of convex (concave) functions that satisfy the Lipschitz condition on the whole space. It is shown that the requirement of upper (lower) boundedness may be omitted for positively homogeneous functions: a positively homogeneous function defined on a normed space is upper (lower) semicontinuous if and only if it is a lower (upper) envelope of a family of continuous sublinear (superlinear) functions. This characterization extends to arbitrary normed spaces a similar statement proved earlier by V.F. Demyanov and A.M. Rubinov for positively homogeneous functions defined on finite-dimensional spaces and later extended by A.Uderzo to the case of uniformly convex Banach spaces. The latter result allows to extend the notions of upper and lower exhausters introduced by V.F. Demyanov in finite-dimensional spaces to nonsmooth functions defined on arbitrary real normed spaces.
Keywords: semicontinuous functions, upper and lower envelopes, convex and concave functions, Lipschitz continuity, positively homogeneous functions.
@article{TIMM_2017_23_1_a10,
     author = {V. V. Gorokhovik},
     title = {On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {88--102},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/}
}
TY  - JOUR
AU  - V. V. Gorokhovik
TI  - On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 88
EP  - 102
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/
LA  - ru
ID  - TIMM_2017_23_1_a10
ER  - 
%0 Journal Article
%A V. V. Gorokhovik
%T On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 88-102
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/
%G ru
%F TIMM_2017_23_1_a10
V. V. Gorokhovik. On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 88-102. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/

[1] Demyanov V.F., Rubinov A.M., “Elementy kvazidifferentsialnogo ischisleniya”, Negladkie zadachi teorii optimizatsii i upravleniya, Izd-vo Leningr. un-ta, L., 1982, 5–127

[2] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp.

[3] Demyanov V.F., “Exhausters of a positively homogeneous function”, Optimization, 45:1 (1999), 13–29 | DOI | MR | Zbl

[4] Demyanov V.F., “Exhausters and convexificators - new tools in nonsmooth analysis”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V.F. Demyanov, A.M. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 85–137 | DOI | MR | Zbl

[5] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp.

[6] Rokafellar R.T., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[7] Gorokhovik V.V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990, 239 pp.; 2-е изд., УРСС, Москва, 2012, 256 с.

[8] Gorokhovik V.V., Trafimovich M.F., “Positively homogeneous functions revisited”, J. Optim. Theory Appl., 171:2 (2016), 481–503 | DOI | MR | Zbl

[9] Uderzo A., “Convex approximators, convexificators and exhausters: applications to constrained extremum problems”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V.F. Demyanov, A.M. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 297–327 | DOI | MR | Zbl

[10] Gorokhovik V.V., Gorokhovik S.Ya., “Kriterii globalnoi epilipshitsevosti mnozhestv”, Izv. AN Belarusi. Ser. fiz.-mat. nauk, 1995, no. 1, 118–120 | Zbl

[11] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1981, 432 pp. | MR

[12] Valentine A.F., Convex Sets, McGraw-Hill Book Company, New York, 1964, 238 pp. | MR | Zbl

[13] Smith C.R., “A characterization of star-shaped sets”, American Math. Monthly, 75:4 (1968), 386 | DOI | MR | Zbl

[14] Gorokhovik V.V., Zorko O.I., “Piecewise affine functions and polyhedral sets”, Optimization, 31:2 (1994), 209–221 | DOI | MR | Zbl

[15] M.A. Krasnoselskii, G.M. Vainikko, P.P. Zabreiko, Ya.B. Rutitskii, V.Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, Gl. red. fiz.-mat. lit., M., 1969, 456 pp.

[16] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva: Svodka rezultatov, Slovar, Nauka, M., 1975, 408 pp.

[17] Khausdorf F., Teoriya mnozhestv, Obedinen. nauch.-tekhn. izd-vo NKTP SSSR. Gl. red. tekhn.-teoret. lit., M.; L., 1937, 304 pp.

[18] Castellani M., “A dual representation for proper positively homogeneous functions”, J. Global Optim., 16:4 (2000), 393–400 | DOI | MR | Zbl

[19] Castellani M., “Dual representation of classes of positively homogeneous functions”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V.F. Demyanov, A.M. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 73–84 | DOI | MR | Zbl