@article{TIMM_2017_23_1_a10,
author = {V. V. Gorokhovik},
title = {On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {88--102},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/}
}
TY - JOUR AU - V. V. Gorokhovik TI - On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 88 EP - 102 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/ LA - ru ID - TIMM_2017_23_1_a10 ER -
%0 Journal Article %A V. V. Gorokhovik %T On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions %J Trudy Instituta matematiki i mehaniki %D 2017 %P 88-102 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/ %G ru %F TIMM_2017_23_1_a10
V. V. Gorokhovik. On the representation of upper semicontinuous functions defined on infinite-dimensional normed spaces as lower envelopes of families of convex functions. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 88-102. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a10/
[1] Demyanov V.F., Rubinov A.M., “Elementy kvazidifferentsialnogo ischisleniya”, Negladkie zadachi teorii optimizatsii i upravleniya, Izd-vo Leningr. un-ta, L., 1982, 5–127
[2] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp.
[3] Demyanov V.F., “Exhausters of a positively homogeneous function”, Optimization, 45:1 (1999), 13–29 | DOI | MR | Zbl
[4] Demyanov V.F., “Exhausters and convexificators - new tools in nonsmooth analysis”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V.F. Demyanov, A.M. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 85–137 | DOI | MR | Zbl
[5] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp.
[6] Rokafellar R.T., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[7] Gorokhovik V.V., Vypuklye i negladkie zadachi vektornoi optimizatsii, Nauka i tekhnika, Minsk, 1990, 239 pp.; 2-е изд., УРСС, Москва, 2012, 256 с.
[8] Gorokhovik V.V., Trafimovich M.F., “Positively homogeneous functions revisited”, J. Optim. Theory Appl., 171:2 (2016), 481–503 | DOI | MR | Zbl
[9] Uderzo A., “Convex approximators, convexificators and exhausters: applications to constrained extremum problems”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V.F. Demyanov, A.M. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 297–327 | DOI | MR | Zbl
[10] Gorokhovik V.V., Gorokhovik S.Ya., “Kriterii globalnoi epilipshitsevosti mnozhestv”, Izv. AN Belarusi. Ser. fiz.-mat. nauk, 1995, no. 1, 118–120 | Zbl
[11] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1981, 432 pp. | MR
[12] Valentine A.F., Convex Sets, McGraw-Hill Book Company, New York, 1964, 238 pp. | MR | Zbl
[13] Smith C.R., “A characterization of star-shaped sets”, American Math. Monthly, 75:4 (1968), 386 | DOI | MR | Zbl
[14] Gorokhovik V.V., Zorko O.I., “Piecewise affine functions and polyhedral sets”, Optimization, 31:2 (1994), 209–221 | DOI | MR | Zbl
[15] M.A. Krasnoselskii, G.M. Vainikko, P.P. Zabreiko, Ya.B. Rutitskii, V.Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, Gl. red. fiz.-mat. lit., M., 1969, 456 pp.
[16] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva: Svodka rezultatov, Slovar, Nauka, M., 1975, 408 pp.
[17] Khausdorf F., Teoriya mnozhestv, Obedinen. nauch.-tekhn. izd-vo NKTP SSSR. Gl. red. tekhn.-teoret. lit., M.; L., 1937, 304 pp.
[18] Castellani M., “A dual representation for proper positively homogeneous functions”, J. Global Optim., 16:4 (2000), 393–400 | DOI | MR | Zbl
[19] Castellani M., “Dual representation of classes of positively homogeneous functions”, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, eds. V.F. Demyanov, A.M. Rubinov, Kluwer Acad. Publ., Dordrecht, 2000, 73–84 | DOI | MR | Zbl