Mots-clés : simple group
@article{TIMM_2016_22_4_a7,
author = {V. A. Belonogov},
title = {A condition for a finite group to be a {Schmidt} group},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {81--86},
year = {2016},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a7/}
}
V. A. Belonogov. A condition for a finite group to be a Schmidt group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 81-86. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a7/
[1] Miller G.A., Moreno H., “Nonabelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc., 1903, no. 4, 398–404 | DOI | MR | Zbl
[2] Shmidt O.Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31:3–4 (1924), 366–372 | Zbl
[3] Shemetkov L.A., “O. Yu. Shmidt i konechnye gruppy”, Ukr. mat. zhurn., 23:5 (1971), 586–590 | Zbl
[4] Monakhov V.S., “O podgruppakh Shmidta konechnykh grupp”, Voprosy algebry, 13 (1998), 153–171
[5] Knyagina V.N., Monakhov V.S., “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sib. mat. zhurn., 45:6 (2004), 1316–1322 | MR | Zbl
[6] Lutsenko Yu.V., Skiba A.N., “Stroenie grupp Shmidta i grupp Belonogova, v kotorykh lyubye dve 3-maksimalnye podgruppy yavlyayutsya $F(G)$-perestanovochnymi”, Vestn. Viteb. gos. un-ta. Matematika, 2009, no. 2 (52), 134–138 | MR | Zbl
[7] Tyutyanov V.N., “Konechnye gruppy s $\mathbb{P}$-subnormalnymi podgruppami Shmidta”, Problemy fiziki, matematiki i tekhniki, 22:1 (2015), 88–91 | Zbl
[8] Huppert B., Endliche gruppen, v. I, Springer, Berlin, 1967, 793 pp. | MR | Zbl
[9] Gorenstein D., Finite groups, Harper Row, N. Y., 1968, 527 pp. | MR | Zbl
[10] Chunikhina I.K., Chunikhin S.A., “O $p$-razlozhimykh gruppakh”, Mat. sb., 15:2 (1944), 325–342 | MR
[11] Arad Z., Chillag D., “A criterium for the existence of normal $\pi$-complements in finite groups”, J. Algebra, 87:2 (1984), 472–482 | DOI | MR | Zbl
[12] Belonogov V.A., “O kontrole prostogo spektra konechnoi prostoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 29–44 | MR
[13] Itô N., “Note on $(LM)$-groups of finite orders”, Kodai Math. Sem., 3:1–2 (1951), 1–6 | MR
[14] Belonogov V.A., “On finite minimal non-$\pi$-closed groups”, Abstracts of the Internat. Conf. and PhD-Master Summer School “Graphs and Groups, Spectra and Symmetries”, Sobolev Inst. Math., Novosibirsk, 2016, 47
[15] Belonogov V.A., “O konechnykh gruppakh, vse maksimalnye podgruppy kotorykh $\pi$-zamknuty”, Mezhdunar. shk.-konf. po teorii grupp, posvyasch. 70-letiyu V.V. Kabanova, sb. st., Kabard.-Balkar. gos. un-t., Nalchik, 2014, 6–9
[16] Belonogov V.A., “Some conditions for a finite group to be a Schmidt group”, XI shk.-konf. po teorii grupp, tez. dokl. Mezhdunar. konf., posvyasch. 70-letiyu A.Yu. Olshanskogo, Krasnoyarsk, 2016, 66–67
[17] Feit W., Thompson J.G., “Solvability of groups of odd order”, Pacific J. Math., 13 (1963), 755–1029 | MR