A condition for a finite group to be a Schmidt group
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 81-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group $G$, and let $\pi$ be a set of primes such that $2\in \pi$. We prove that if all maximal subgroups of $G$ are $\pi$-closed and $G$ itself is not $\pi$-closed then $G$ is a Schmidt group. The proof employs the author's earlier results on the properties of pairs $(G,\pi)$ where $G$ is a simple minimal non-$\pi$-closed group and $\pi$ is arbitrary.
Keywords: finite group, Schmidt group, $\pi$-closed group, maximal subgroup.
Mots-clés : simple group
@article{TIMM_2016_22_4_a7,
     author = {V. A. Belonogov},
     title = {A condition for a finite group to be a {Schmidt} group},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a7/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - A condition for a finite group to be a Schmidt group
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 81
EP  - 86
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a7/
LA  - ru
ID  - TIMM_2016_22_4_a7
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T A condition for a finite group to be a Schmidt group
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 81-86
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a7/
%G ru
%F TIMM_2016_22_4_a7
V. A. Belonogov. A condition for a finite group to be a Schmidt group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 81-86. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a7/