Mots-clés : Michel condition
@article{TIMM_2016_22_4_a27,
author = {D. V. Khlopin},
title = {On the {Hamiltonian} in infinite horizon control problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {295--310},
year = {2016},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a27/}
}
D. V. Khlopin. On the Hamiltonian in infinite horizon control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 295-310. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a27/
[1] Aubin J., Clarke F., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control Optim., 17:5 (1979), 567–586 | DOI | MR | Zbl
[2] Aseev S.M., Kryazhimskii A.V., “The Pontryagin Maximum Principle and problems of optimal economic growth”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR | Zbl
[3] Aseev S.M., Kryazhimskii A.V., Besov K., “Infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 67:2 (2012), 195–253 | DOI | MR | Zbl
[4] Aseev S.M., Veliov V., “Needle variations in infinite-horizon optimal control”, Variational and optimal control problems on unbounded domains, Contemp. Math., 619, eds. G. Wolansky, A.J. Zaslavski, AMS, Providence, 2014, 1–17 | DOI | MR | Zbl
[5] Belyakov A.O., “Necessary conditions for infinite horizon optimal control problems revisited”, 2015, 15 pp., arXiv: http://arxiv.org/pdf/1512.01206
[6] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl
[7] Khlopin D.V., “Necessity of vanishing shadow price in infinite horizon control problems”, J. Dyn. Con. Sys., 19:4 (2013), 519–552 | DOI | MR | Zbl
[8] Khlopin D.V., “Necessity of limiting co-state arc in Bolza-type infinite horizon problem”, Optimization, 64:11 (2015), 2417–2440 | DOI | MR | Zbl
[9] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50:4 (1982), 975–984 | DOI | MR
[10] Khlopin D.V., “On Hamiltonian as limiting gradient in infinite horizon problem”, J. Dyn. Con. Sys., 2016, 1–18 | DOI
[11] Carlson D.A., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64:1 (1990), 55–69 | DOI | MR | Zbl
[12] Baumeister J., Leitao A., Silva G., “On the value function for nonautonomous optimal control problems with infinite horizon”, Syst. Control. Lett., 56:3 (2007), 188–196 | DOI | MR | Zbl
[13] Seierstad A., Sydsaeter K., “Conditions implying the vanishing of the Hamiltonian at infinity in optimal control problems”, Optim. Lett., 3:4 (2009), 507–512 | DOI | MR | Zbl
[14] Clarke F., Necessary conditions in dynamic optimization, AMS, Providence, 2005, 113 pp. | MR
[15] Weitzman M., “Gamma discounting”, Am. Econ. Rev., 91:1 (2001), 260–71 | DOI
[16] Ekeland I., Pirvu T., “Investment and consumption without commitment”, Math. Finan. Econ., 2:1 (2008), 57–86 | DOI | MR | Zbl
[17] Aubin J., Ekeland I., Applied nonlinear analysis, John Wiley Sons Inc., New York, 1984, 518 pp. | MR | Zbl