On the Hamiltonian in infinite horizon control problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 295-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study necessary optimality conditions for infinite horizon control problems with performance functional containing a discounting factor of not necessarily exponential form. A uniformly overtaking criterion is considered as an optimality criterion. The behavior of the pair “adjoint variable-Hamiltonian” at infinity in a neighborhood of an optimal trajectory is described in terms of limiting gradients of the payoff function. This guarantees the existence of the limiting solution of the Pontryagin maximum principle corresponding to the optimal process. We discuss the assumptions that provide the necessity of both a condition of the Michel type for the maximized Hamiltonian and a formula of the Cauchy type for the adjoint variable proposed in papers by Kryazhimskii and Aseev. In particular, this extends the maximum principle to a complete system of relations. The case of a discounting factor of the form $(1+t)^{-s}$ is considered separately.
Keywords: infinite horizon control problem, necessary conditions, transversality condition at infinity, Pontryagin maximum principle, uniformly overtaking optimal control.
Mots-clés : Michel condition
@article{TIMM_2016_22_4_a27,
     author = {D. V. Khlopin},
     title = {On the {Hamiltonian} in infinite horizon control problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {295--310},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a27/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - On the Hamiltonian in infinite horizon control problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 295
EP  - 310
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a27/
LA  - ru
ID  - TIMM_2016_22_4_a27
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T On the Hamiltonian in infinite horizon control problems
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 295-310
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a27/
%G ru
%F TIMM_2016_22_4_a27
D. V. Khlopin. On the Hamiltonian in infinite horizon control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 295-310. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a27/

[1] Aubin J., Clarke F., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control Optim., 17:5 (1979), 567–586 | DOI | MR | Zbl

[2] Aseev S.M., Kryazhimskii A.V., “The Pontryagin Maximum Principle and problems of optimal economic growth”, Proc. Steklov Inst. Math., 257 (2007), 1–255 | DOI | MR | Zbl

[3] Aseev S.M., Kryazhimskii A.V., Besov K., “Infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 67:2 (2012), 195–253 | DOI | MR | Zbl

[4] Aseev S.M., Veliov V., “Needle variations in infinite-horizon optimal control”, Variational and optimal control problems on unbounded domains, Contemp. Math., 619, eds. G. Wolansky, A.J. Zaslavski, AMS, Providence, 2014, 1–17 | DOI | MR | Zbl

[5] Belyakov A.O., “Necessary conditions for infinite horizon optimal control problems revisited”, 2015, 15 pp., arXiv: http://arxiv.org/pdf/1512.01206

[6] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl

[7] Khlopin D.V., “Necessity of vanishing shadow price in infinite horizon control problems”, J. Dyn. Con. Sys., 19:4 (2013), 519–552 | DOI | MR | Zbl

[8] Khlopin D.V., “Necessity of limiting co-state arc in Bolza-type infinite horizon problem”, Optimization, 64:11 (2015), 2417–2440 | DOI | MR | Zbl

[9] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50:4 (1982), 975–984 | DOI | MR

[10] Khlopin D.V., “On Hamiltonian as limiting gradient in infinite horizon problem”, J. Dyn. Con. Sys., 2016, 1–18 | DOI

[11] Carlson D.A., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64:1 (1990), 55–69 | DOI | MR | Zbl

[12] Baumeister J., Leitao A., Silva G., “On the value function for nonautonomous optimal control problems with infinite horizon”, Syst. Control. Lett., 56:3 (2007), 188–196 | DOI | MR | Zbl

[13] Seierstad A., Sydsaeter K., “Conditions implying the vanishing of the Hamiltonian at infinity in optimal control problems”, Optim. Lett., 3:4 (2009), 507–512 | DOI | MR | Zbl

[14] Clarke F., Necessary conditions in dynamic optimization, AMS, Providence, 2005, 113 pp. | MR

[15] Weitzman M., “Gamma discounting”, Am. Econ. Rev., 91:1 (2001), 260–71 | DOI

[16] Ekeland I., Pirvu T., “Investment and consumption without commitment”, Math. Finan. Econ., 2:1 (2008), 57–86 | DOI | MR | Zbl

[17] Aubin J., Ekeland I., Applied nonlinear analysis, John Wiley Sons Inc., New York, 1984, 518 pp. | MR | Zbl