On the finite prime spectrum minimal groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 222-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group. The set of all prime divisors of the order of $G$ is called the prime spectrum of $G$ and is denoted by $\pi(G)$. A group $G$ is called prime spectrum minimal if $\pi(G) \not = \pi(H)$ for any proper subgroup$H$ of$G$. We prove that every prime spectrum minimal group all whose non-abelian composition factors are isomorphic to the groups from the set $\{PSL_2(7), PSL_2(11), PSL_5(2)\}$ is generated by two conjugate elements. Thus, we expand the correspondent result for finite groups with Hall maximal subgroups. Moreover, we study the normal structure of a finite prime spectrum minimal group which has a simple non-abelian composition factor whose order is divisible by $3$ different primes only.
Keywords: finite group, generation by a pair of conjugate elements, prime spectrum, prime spectrum minimal group, maximal subgroup, composition factor.
@article{TIMM_2015_21_3_a23,
     author = {N. V. Maslova},
     title = {On the finite prime spectrum minimal groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--232},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a23/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - On the finite prime spectrum minimal groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 222
EP  - 232
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a23/
LA  - ru
ID  - TIMM_2015_21_3_a23
ER  - 
%0 Journal Article
%A N. V. Maslova
%T On the finite prime spectrum minimal groups
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 222-232
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a23/
%G ru
%F TIMM_2015_21_3_a23
N. V. Maslova. On the finite prime spectrum minimal groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 222-232. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a23/

[1] Kondratev A.S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2009, 310 pp.

[2] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 253 pp. URL: http:math.nsc.ru/~alglog/alglogf.html

[3] Maslova N.V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. mat. zhurn., 53:5 (2012), 1065–1076 | MR | Zbl

[4] Maslova N.V., Revin D.O., “Konechnye gruppy, v kotorykh vse maksimalnye podgruppy khollovy”, Mat. tr., 15:2 (2012), 105–126 | MR | Zbl

[5] Maslova N.V., Revin D.O., “Porozhdaemost konechnoi gruppy s khollovymi maksimalnymi podgruppami paroi sopryazhennykh elementov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 199–206 | MR

[6] Maslova N.V., Revin D.O., “O neabelevykh kompozitsionnykh faktorakh konechnoi gruppy, minimalnoi otnositelno prostogo spektra”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 155–166 | MR

[7] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[8] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Robert Wilson [et. al.], Atlas of finite group representations, http:brauer.maths.gmul.ac.uk/Atlas/

[10] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | MR | Zbl

[11] Gaschütz W., “Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden”, Math. Z., 60:3 (1954), 274–286 | DOI | MR | Zbl

[12] Gerono G. C., “Note sur la resolution en nombres entiers et positifs de l'equation $x^m = y^n-1$”, Nouv. Ann. Math (2), 9 (1870), 469–471

[13] Gorenstein D., Finite simple groups. An introduction to their classification, Plenum Publ. Corp., N. Y., 1982, 334 pp. | MR | Zbl

[14] Herzog M., “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl

[15] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl

[16] Liebeck M.W., Praeger C.E., Saxl J., “Transitive subgroups of primitive permutation groups”, J. Algebra, 234:2 (2000), 291–361 | DOI | MR | Zbl

[17] Thompson J.G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl