Multicriteria boundary value problem in dynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 20-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a mathematical model that contains two basic components: a controlled dynamics and a boundary value problem in the form of a finite-dimensional multicriteria equilibrium model. The finite-dimensional problem describes some controlled object, which is in equilibrium (in a steady state). Under the influence of external disturbances the object loses its stability and takes an arbitrary position. It is required to return the object to equilibrium by controlling the dynamics. We propose and study a mathematical model of this situation and a method for its solution. The proposed model belongs to the class of stabilization problems. A real-world prototype of this problem can be easily found in every sphere of human activity: from technologies to politics.
Keywords: terminal control, boundary value problem, equilibrium model, linear dynamics, pareto optimality, nash equilibrium, saddle-point approach
Mots-clés : convergence.
@article{TIMM_2015_21_3_a2,
     author = {A. S. Antipin and E. V. Khoroshilova},
     title = {Multicriteria boundary value problem in dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {20--29},
     year = {2015},
     volume = {21},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a2/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - E. V. Khoroshilova
TI  - Multicriteria boundary value problem in dynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 20
EP  - 29
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a2/
LA  - ru
ID  - TIMM_2015_21_3_a2
ER  - 
%0 Journal Article
%A A. S. Antipin
%A E. V. Khoroshilova
%T Multicriteria boundary value problem in dynamics
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 20-29
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a2/
%G ru
%F TIMM_2015_21_3_a2
A. S. Antipin; E. V. Khoroshilova. Multicriteria boundary value problem in dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 3, pp. 20-29. http://geodesic.mathdoc.fr/item/TIMM_2015_21_3_a2/

[1] Antipin A.S., O dvukh postanovkakh ravnovesnykh zadach, Optimizatsiya i prilozheniya, no. 2, Izd-vo VTs RAN, M., 2011

[2] Vasilev F.P., Metody optimizatsii, v 2 kn., v. 1,2, MTsNMO, M., 2011, 624,434 pp.

[3] F.P. Vasilev, M.A. Kurzhanskii, M.M. Potapov, A.V. Razgulin, Priblizhennoe reshenie dvoistvennykh zadach upravleniya i nablyudeniya, Izd-vo VMK MGU, M., 2010, 384 pp.

[4] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, FIZMATLIT, M., 2009, 572 pp.

[5] Antipin A.S., “Two-person game with Nash equilibrium in optimal control problems”, Optim. Lett., 6:7 (2012), 1349–1378 | DOI | MR | Zbl

[6] Antipin A.S., Khoroshilova E.V., “Lineinoe programmirovanie i dinamika”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 7–25 | MR

[7] Antipin A.S., “Terminalnoe upravlenie kraevymi modelyami”, Zhurn. vychisl. matematiki i mat. fiziki, 54:2 (2014), 257–285 | DOI | MR | Zbl

[8] Antipin A.S., Vasileva O.O., “Dinamicheskii metod mnozhitelei v terminalnom upravlenii”, Zhurn. vychisl. matematiki i mat. fiziki, 55:5 (2015), 46–68 | MR

[9] Antipin A.S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 45:11,12 (2005), 2102–2111, 1969–1990 | Zbl

[10] Antipin A.S., Khoroshilova E.V., “Optimalnoe upravlenie so svyazannymi nachalnymi i terminalnymi usloviyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 13–28 | MR

[11] Antipin A.S., Khoroshilova E.V., “O kraevoi zadache terminalnogo upravleniya s kvadratichnym kriteriem kachestva”, Izv. Irkut. gos. un-ta (Ser. Matematika.), 8 (2014), 7–28

[12] Vasilev F.P., Khoroshilova E.V., Antipin A.S., “Regulyarizovannyi ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 27–37 | Zbl